On Automorphisms of a Distance-Regular Graph with Intersection Array {69, 56, 10; 1, 14, 60}

被引:0
作者
A. A. Makhnev
M. S. Nirova
机构
[1] Ural Branch of the Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics
[2] Ural Federal University,undefined
[3] Kabardino-Balkar State University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2018年 / 303卷
关键词
distance-regular graph; automorphism of a graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ be a distance-regular graph of diameter 3 with eigenvalues θ0 > θ1 > θ2 > θ3. If θ2 = −1, then the graph Γ3 is strongly regular and the complementary graph Γ¯3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar \Gamma _3}$$\end{document} is pseudogeometric for pGc3(k, b1/c2). If Γ3 does not contain triangles and the number of its vertices v is less than 800, then Γ has intersection array {69, 56, 10; 1, 14, 60}. In this case Γ3 is a graph with parameters (392, 46, 0, 6) and Γ¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar \Gamma _2}$$\end{document} is a strongly regular graph with parameters (392, 115, 18, 40). Note that the neighborhood of any vertex in a graph with parameters (392, 115, 18, 40) is a strongly regular graph with parameters (115, 18, 1, 3) and its existence is unknown. In this paper, we find possible automorphisms of these strongly regular graphs and automorphisms of a hypothetical distance-regular graph with intersection array {69, 56, 10; 1, 14, 60}. In particular, it is proved that the latter graph is not ar-ctransitive.
引用
收藏
页码:166 / 174
页数:8
相关论文
共 50 条
[21]   On automorphisms of a distance-regular graph with intersection array {99, 84, 1; 1,12, 99} [J].
Belousov, I. N. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (03) :23-30
[22]   ON AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {35,32,1;1,2,35} [J].
Tsiovkina, L. Yu. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2012, 9 :285-293
[23]   Automorphisms of a distance-regular graph with intersection array {45,42,1; 1,6,45} [J].
Makhnev, A. A. ;
Belousova, V., I .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 :130-136
[24]   Automorphisms of a distance-regular graph with intersection array {176,150,1; 1,25,176} [J].
Belousov, Ivan Nikolaevich ;
Makhnev, Alexandr Alekseevich .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 :754-761
[25]   On Automorphisms of a Distance-Regular Graph with Intersection Array {39,36,1;1,2,39} [J].
Belousov, I. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 295 (01) :S28-S37
[26]   Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176} [J].
A. A. Makhnev ;
D. V. Paduchikh .
Proceedings of the Steklov Institute of Mathematics, 2019, 305 :S102-S113
[27]   On Automorphisms of a Distance-Regular Graph with Intersection Array {99,84,1;1,12,99} [J].
Belousov, I. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 :S19-S26
[28]   Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}. [J].
Makhnev, A. A. ;
Paduchikh, D. V. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02) :173-184
[29]   On automorphisms of a distance-regular graph with intersection array {35,32,1;1,4,35} [J].
Tsiovkina, L. Yu. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 :S209-S215
[30]   On automorphisms of a distance-regular graph with intersection array {119,100,15; 1,20,105} [J].
Makhnev, Alexandr Alekseevich ;
Isakova, Mariana Malilovna .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 :198-204