All Topologies Come from a Family of 0-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0{-}1$$\end{document}-Valued Quasi-metrics

被引:0
作者
Zafer Ercan
Mehmet Vural
机构
[1] Abant İzzet Baysal University,Department of Mathematics
关键词
Continuity spaces; 0–1 valued quasi-metric spaces; Statistical convergence; Primary 54A35;
D O I
10.1007/s41980-018-0168-9
中图分类号
学科分类号
摘要
We prove the statement in the title. This reproves that every topological space is induced by a quasi-uniformity.
引用
收藏
页码:835 / 841
页数:6
相关论文
共 7 条
[1]  
Kopperman R(1988)All topologies come from generalized metrics Am. Math. Mon. 95 89-97
[2]  
Di Maio G(2008)Statistical convergence in topology Topol. Appl. 156 28-45
[3]  
Kočinac LDR(2016)Concerning generalized quasimetric and quasi-uniformity for topological spaces Topol. Proc. 47 261-271
[4]  
Mukherjee MN(1962)Quasi-uniformization of topological spaces Math. Ann. 147 316-317
[5]  
Debray A(undefined)undefined undefined undefined undefined-undefined
[6]  
Sinha S(undefined)undefined undefined undefined undefined-undefined
[7]  
Pervin WJ(undefined)undefined undefined undefined undefined-undefined