Congruences modulo powers of 5 for two restricted bipartitions

被引:0
作者
Liuquan Wang
机构
[1] National University of Singapore,Department of Mathematics
来源
The Ramanujan Journal | 2017年 / 44卷
关键词
Partitions; Congruences; 5-Regular bipartitions; 2-Coloured partitions; Interlinked ; -series identity; Primary 05A17; Secondary 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Let B5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{5}(n)$$\end{document} denote the number of 5-regular bipartitions of n. We establish some Ramanujan-type congruences like B5(4n+3)≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{5}(4n+3) \equiv 0$$\end{document} (mod 5) and many infinite families of congruences for B5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{5}(n)$$\end{document} modulo higher powers of 5 such as B552k-1n+2·52k-1-13≡0(mod5k).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{5}\left( 5^{2k-1}n+\frac{2\cdot 5^{2k-1}-1}{3}\right) \equiv 0 \pmod {5^k}. \end{aligned}$$\end{document}We also apply the same method to obtain some similar results for another type of bipartition function. Meanwhile, we give a new interesting interlinked q-series identity related with Rogers–Ramanujan continued fraction, which answers a question of M. Hirschhorn.
引用
收藏
页码:471 / 491
页数:20
相关论文
共 49 条
  • [1] Ahlgren S(2001)The arithmetic of partitions into distinct parts Mathematika 48 203-211
  • [2] Lovejoy J(2010)Arithmetic properties of partitions with even parts distinct Ramanujan J. 23 169-181
  • [3] Andrews GE(1967)Proof of a conjecture of Ramanujan Glasg. Math. J. 8 14-32
  • [4] Hirschhorn MD(2008)Divisibility properties of the 5-regular and 13-regular partition functions Integers 8 A60-834
  • [5] Sellers JA(2010)Ramanujan’s cubic continued fraction and Ramanujan type congruences for a ceratin partition function Int. J. Number Theory 6 819-1913
  • [6] Atkin AOL(2010)New analogues of Ramanujan’s partition identities J. Number Theory 130 1898-943
  • [7] Calkin N(2011)On the number of partitions with distinct even parts Discret. Math. 311 940-1568
  • [8] Drake N(2013)Congruences for the number of Discret. Math. 313 1565-523
  • [9] James K(2013)-tuple partitions with distinct even parts Adv. Appl. Math. 51 507-70
  • [10] Law S(2009)Arithmetic properties of the Ramanujan J. 19 63-108