Bénard-Marangoni instability in a viscoelastic ferrofluid

被引:0
作者
David Laroze
Javier Martinez-Mardones
Harald Pleiner
机构
[1] Max-Planck-Institute for Polymer Research,Instituto de Alta Investigación
[2] Universidad de Tarapacá,Instituto de Física
[3] P. Universidad Católica de Valparaiso,undefined
来源
The European Physical Journal Special Topics | 2013年 / 219卷
关键词
Rayleigh Number; European Physical Journal Special Topic; Collocation Point; Marangoni Number; Deborah Number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we report theoretical and numerical results on convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are given by the Oldroyd model. We impose the lower interface to be rigid, whereas the upper one is free and is assumed to be non-deformable and flat. Also, at the upper interface the surface tension is taken to vary linearly with the temperature. Using a spectral method we calculate numerically the convective thresholds for both stationary and oscillatory bifurcations. The effect of the viscoelasticity and the Kelvin force on the instability thresholds are emphasized.
引用
收藏
页码:71 / 80
页数:9
相关论文
共 96 条
[1]  
Neuringer J.L.(1964)undefined Phys. Fluids 7 1927-undefined
[2]  
Rosensweig R.E.(1970)undefined J. Fluid Mech. 40 753-undefined
[3]  
Finlayson B.A.(2004)undefined Phys. Rev. E 69 046301-undefined
[4]  
Ryskin A.(1990)undefined J. Coll. Int. Sci. 134 435-undefined
[5]  
Pleiner H.(2005)undefined Phys. Rev. E 71 066311-undefined
[6]  
Stiles P.J.(2006)undefined Phys. A 371 46-undefined
[7]  
Kagan M.(2009)undefined Int. J. Bifur. Chaos 19 2755-undefined
[8]  
Kaloni P.N.(2011)undefined Fluid Dyn. Res. 43 025502-undefined
[9]  
Lou J.X.(2011)undefined Trans. Porous Med. 88 421-undefined
[10]  
Laroze D.(1996)undefined J. Non-Newtonian Fluid Mech. 66 1-undefined