Integral Points on the Elliptic Curve y2 = x3 − 4p2x

被引:0
作者
Hai Yang
Ruiqin Fu
机构
[1] Xi’an Polytechnic University,School of Science
[2] Xi’an Shiyou University,School of Science
来源
Czechoslovak Mathematical Journal | 2019年 / 69卷
关键词
elliptic curve; integral point; quadratic equation; quartic Diophantine equation; 11G05; 11D25; 11Y50;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E: y2 = x3 − 4p2x. Further, let N(p) denote the number of pairs of integral points (x, ±y) on E with y > 0. We prove that if p ⩾ 17, then N(p) ⩽ 4 or 1 depending on whether p ≡ 1 (mod 8) or p ≡ −1 (mod 8).
引用
收藏
页码:853 / 862
页数:9
相关论文
共 21 条
[1]  
Bennett M A(2013)Integral points on congruent number curves Int. J. Number Theory 9 1619-1640
[2]  
Bennett M A(1999)The Diophantine equation Proc. Am. Math. Soc. 127 3481-3491
[3]  
Walsh G(2000) − J. Number Theory 80 187-208
[4]  
Bremner A(2006) = 1 Math. Comput. 75 1493-1505
[5]  
Silverman J H(2006)Integral points in arithmetic progression on Math. Comput. 75 1585-1593
[6]  
Tzanakis N(2009) = J. Number Theory 129 102-121
[7]  
Draziotis K A(2011)( Tokyo J. Math. 34 367-381
[8]  
Draziotis K(2013) − Acta Arith. 160 333-348
[9]  
Poulakis D(2007)) Math. J. Okayama Univ. 49 183-184
[10]  
Draziotis K(2007)Integer points on the curve Int. J. Algebra 1 247-250