Integral Points on the Elliptic Curve y2 = x3 − 4p2x

被引:0
|
作者
Hai Yang
Ruiqin Fu
机构
[1] Xi’an Polytechnic University,School of Science
[2] Xi’an Shiyou University,School of Science
来源
Czechoslovak Mathematical Journal | 2019年 / 69卷
关键词
elliptic curve; integral point; quadratic equation; quartic Diophantine equation; 11G05; 11D25; 11Y50;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E: y2 = x3 − 4p2x. Further, let N(p) denote the number of pairs of integral points (x, ±y) on E with y > 0. We prove that if p ⩾ 17, then N(p) ⩽ 4 or 1 depending on whether p ≡ 1 (mod 8) or p ≡ −1 (mod 8).
引用
收藏
页码:853 / 862
页数:9
相关论文
共 50 条
  • [1] Integral Points on the Elliptic Curve y2 = x3-4p2x
    Yang, Hai
    Fu, Ruiqin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 853 - 862
  • [2] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
    Teng Cheng
    Qingzhong Ji
    Hourong Qin
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
  • [3] Rational Points of Elliptic Curve y2 = x3 + k3
    Wu, Xia
    Qin, Yan
    ALGEBRA COLLOQUIUM, 2018, 25 (01) : 133 - 138
  • [4] Integral points on the elliptic curve Epq: y2 = x3 + (pq-12) x-2(pq-8)
    Cheng, Teng
    Ji, Qingzhong
    Qin, Hourong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 343 - 352
  • [5] THE TORSION SUBGROUP OF THE ELLIPTIC CURVE Y2 = X3
    Dimabayao, Jerome T.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 63 (02) : 137 - 149
  • [6] Integral points on the elliptic curve y2=x3+27x−62
    Olcay Karaatlı
    Refik Keskin
    Journal of Inequalities and Applications, 2013 (1)
  • [7] Elliptic Curve Integral Points on y2 = x3+19x-46
    Zhao, Jianhong
    Yang, Lixing
    PROCEEDINGS OF THE 2ND INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION (IFMEITA 2017), 2017, 130 : 628 - 632
  • [8] Integral points on the elliptic curve y2 = x3+27x-62
    Karaatli, Olcay
    Keskin, Refik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] Integer points on the curve Y2 = X3 ± pkX
    Draziotis, Konstantinos A.
    MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1493 - 1505
  • [10] The Integral Points on the Elliptic Curve y2=3mx(x2-8)
    Fei, Wan
    Zhao, Jianhong
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259