Stability and bifurcation analysis of two species amensalism model with Michaelis–Menten type harvesting and a cover for the first species

被引:0
作者
Yu Liu
Liang Zhao
Xiaoyan Huang
Hang Deng
机构
[1] Fuzhou University,College of Mathematics and Computer Science
[2] Guangxi University of Finance and Economics,College of Information and Statistics
来源
Advances in Difference Equations | / 2018卷
关键词
Amensalism model; Nonlinear harvesting; Cover; Bifurcation analysis; 34C25; 92D25; 34D20; 34D40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a two species amensalism model with Michaelis–Menten type harvesting and a cover for the first species that takes the form dx(t)dt=a1x(t)−b1x2(t)−c1(1−k)x(t)y(t)−qE(1−k)x(t)m1E+m2(1−k)x(t),dy(t)dt=a2y(t)−b2y2(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &\frac{dx(t)}{dt}=a_{1}x(t)-b_{1}x^{2}(t)-c_{1}(1-k)x(t)y(t)- \frac{qE(1-k)x(t)}{m_{1}E+m_{2}(1-k)x(t)}, \\ &\frac{dy(t)}{dt}=a_{2}y(t)-b_{2}y^{2}(t) \end{aligned}$$ \end{document} is investigated, where ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}$\end{document}, bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_{i}$\end{document}, i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2$\end{document}, and c1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{1}$\end{document} are all positive constants, k is a cover provided for the species x, and 0<k<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< k<1$\end{document}. The stability and bifurcation analysis for the system are taken into account. The existence and stability of all possible equilibria of the system are investigated. With the help of Sotomayor’s theorem, we can prove that there exist two saddle-node bifurcations and two transcritical bifurcations under suitable conditions.
引用
收藏
相关论文
共 73 条
[1]  
Yang K.(2016)Influence of single feedback control variable on an autonomous Holling-II type cooperative system J. Math. Anal. Appl. 435 874-888
[2]  
Miao Z.(2015)Positive periodic solution of a discrete Lotka–Volterra commensal symbiosis model Commun. Math. Biol. Neurosci. 2015 364-371
[3]  
Chen F.(2015)Dynamic behaviors of a periodic Lotka–Volterra commensal symbiosis model with impulsive Commun. Math. Biol. Neurosci. 2015 33-50
[4]  
Xie X.D.(2015)Almost periodic solution of a discrete commensalism system Discrete Dyn. Nat. Soc. 2015 283-286
[5]  
Miao Z.S.(2015)Positive periodic solution of a discrete obligate Lotka–Volterra model Commun. Math. Biol. Neurosci. 2015 100-101
[6]  
Xue Y.L.(2015)Global stability of a commensal symbiosis model with feedback controls Commun. Math. Biol. Neurosci. 2015 22-26
[7]  
Miao Z.S.(2018)A Holling type commensal symbiosis model involving Allee effect Commun. Math. Biol. Neurosci. 2018 395-401
[8]  
Xie X.D.(2018)Dynamic behaviors of a commensal symbiosis model with non-monotonic functional response and non-selective harvesting in a partial closure Commun. Math. Biol. Neurosci. 2018 278-295
[9]  
Pu L.Q.(2016)A commensal symbiosis model with Holling type functional response J. Math. Comput. Sci. 16 317-337
[10]  
Xue Y.L.(2016)Global attractivity of a discrete cooperative system incorporating harvesting Adv. Differ. Equ. 2016 58-82