Semhybridnet: a semantically enhanced hybrid CNN-transformer network for radar pulse image segmentation

被引:0
作者
Hongjia Liu
Yubin Xiao
Xuan Wu
Yuanshu Li
Peng Zhao
Yanchun Liang
Liupu Wang
You Zhou
机构
[1] Jilin University,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology
[2] School of Computer Science,undefined
[3] Zhuhai College of Science and Technology,undefined
来源
Complex & Intelligent Systems | 2024年 / 10卷
关键词
Semantic segmentation; Convolutional neural network; Transformer; Radar pulse image segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Radar signal sorting is a vital component of electronic warfare reconnaissance, serving as the basis for identifying the source of radar signals. However, traditional radar signal sorting methods are increasingly inadequate and computationally complex in modern electromagnetic environments. To address this issue, this paper presents a novel machine-learning-based approach for radar signal sorting. Our method utilizes SemHybridNet, a Semantically Enhanced Hybrid CNN-Transformer Network, for the classification of semantic information in two-dimensional radar pulse images obtained by converting the original radar data. SemHybridNet incorporates two innovative modules: one for extracting period structure features, and the other for ensuring effective integration of local and global features. Notably, SemHybridNet adopts an end-to-end structure, eliminating the need for repetitive looping over the original sequence and reducing computational complexity. We evaluate the performance of our method through conducting comprehensive comparative experiments. The results demonstrate our method significantly outperforms the traditional methods, particularly in environments with high missing and noise pulse rates. Moreover, the ablation studies confirm the effectiveness of these two proposed modules in enhancing the performance of SemHybridNet. In conclusion, our method holds promise for enhancing electronic warfare reconnaissance capabilities and opens new avenues for future research in this field.
引用
收藏
页码:2851 / 2868
页数:17
相关论文
共 50 条
  • [21] A hybrid enhanced attention transformer network for medical ultrasound image segmentation
    Jiang, Tao
    Xing, Wenyu
    Yu, Ming
    Ta, Dean
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [22] A synergistic CNN-transformer network with pooling attention fusion for hyperspectral image classification
    Chen, Peng
    He, Wenxuan
    Qian, Feng
    Shi, Guangyao
    Yan, Jingwen
    DIGITAL SIGNAL PROCESSING, 2025, 160
  • [23] Image Deblurring Based on an Improved CNN-Transformer Combination Network
    Chen, Xiaolin
    Wan, Yuanyuan
    Wang, Donghe
    Wang, Yuqing
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [24] A CNN-Transformer Hybrid Model Based on CSWin Transformer for UAV Image Object Detection
    Lu, Wanjie
    Lan, Chaozhen
    Niu, Chaoyang
    Liu, Wei
    Lyu, Liang
    Shi, Qunshan
    Wang, Shiju
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1211 - 1231
  • [25] MedFCT: A Frequency Domain Joint CNN-Transformer Network for Semi-supervised Medical Image Segmentation
    Xie, Shiao
    Huang, Huimin
    Niu, Ziwei
    Lin, Lanfen
    Chen, Yen-Wei
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1913 - 1918
  • [26] An FFT-based CNN-Transformer Encoder for Semantic Segmentation of Radar Sounder Signal
    Ghosh, Raktim
    Bovolo, Francesca
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVIII, 2022, 12267
  • [27] An effective CNN and Transformer complementary network for medical image segmentation
    Yuan, Feiniu
    Zhang, Zhengxiao
    Fang, Zhijun
    PATTERN RECOGNITION, 2023, 136
  • [28] A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation
    Zhang, Chong
    Wang, Lingtong
    Wei, Guohui
    Kong, Zhiyong
    Qiu, Min
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [29] UTNETPARA: A HYBRID CNN-TRANSFORMER ARCHITECTURE WITH MULTI-SCALE FUSION FOR WHOLE-SLIDE IMAGE SEGMENTATION
    Huang, Boqiang
    Ying, Jiayu
    Lyu, Ruizhi
    Schaadt, Nadine S.
    Klinkhammer, Barbara M.
    Boor, Peter
    Lotz, Johannes
    Feuerhake, Friedrich
    Merhof, Dorit
    IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024, 2024,
  • [30] Multi-level wavelet network based on CNN-Transformer hybrid attention for single image deraining
    Liu, Bin
    Fang, Siyan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (30) : 22387 - 22404