Multiwalled Carbon Nanotubes as Building Blocks in Nanoelectronics

被引:2
|
作者
Markus Ahlskog
Pertti Hakonen
Mikko Paalanen
Leif Roschier
Reeta Tarkiainen
机构
[1] Helsinki University of Technology,Low Temperature Laboratory
来源
Journal of Low Temperature Physics | 2001年 / 124卷
关键词
Carbon Nanotubes; Multiwalled Carbon; Carbon Layer; Carbon Multiwalled Nanotubes; Interlayer Coupling;
D O I
暂无
中图分类号
学科分类号
摘要
Molecular level components, like carbon multiwalled nanotubes (MWNT), show great potential for future nanoelectronics. At low frequencies, only the outermost carbon layer determines the transport properties of the MWNT. Due to the multiwalled structure and large capacitive interlayer coupling, also the inner layers contribute to the conduction at high frequencies. Consequently, the conduction properties of MWNTs are not very far from those of regular conductors with well-defined electrical characteristics. In our work we have experimentally utilized this fact in constructing various nanoelectronic components out of MWNTs, such as single electron transistors (SET), lumped resistors, and transmission lines. We present results on several nanotube samples, grown both using chemical vapor deposition as well as arc-discharge vaporization. Our results show that SET-electrometers with a noise level as low as 6·10−6 e/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {Hz} $$ \end{document} (at 45 Hz) can be built using arc-discharge-grown carbon nanotubes. Moreover, short nanotubes with small contact areas are found to work at 4.2 K with good gate modulation. Reactive ion etching on CVD tubes is employed to produce nearly Ohmic components with a resistance of 200 kΩ over a 2 μm section. At high frequencies, MWNTs work over micron distances as special LC-transmission lines with high impedance, on the order of 5 kΩ.
引用
收藏
页码:335 / 352
页数:17
相关论文
共 50 条
  • [11] Surfactant removal with multiwalled carbon nanotubes
    Gao, Qian
    Chen, Weixiao
    Chen, Yin
    Werner, David
    Cornelissen, Gerard
    Xing, Baoshan
    Tao, Shu
    Wang, Xilong
    WATER RESEARCH, 2016, 106 : 531 - 538
  • [12] Single Walled Carbon Nanotubes based Ionic Building Blocks for Nanoelectronic Devices
    Yadav, Yamini
    Prasad, Shalini
    NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS: MATERIALS, FABRICATION, PARTICLES, AND CHARACTERIZATION, 2008, : 101 - +
  • [13] The 1/f noise in multiwalled carbon nanotubes
    Kong, WJ
    Lü, L
    Zhang, DL
    Pan, ZW
    CHINESE PHYSICS, 2005, 14 (10): : 2090 - 2092
  • [14] Multishell carrier transport in multiwalled carbon nanotubes
    Agrawal, Saurabh
    Raghuveer, Makala S.
    Ramprasad, Rampi
    Ramanath, Ganapathiraman
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2007, 6 (06) : 722 - 726
  • [15] Supermolecular switches based on multiwalled carbon nanotubes
    Subramanian, A.
    Dong, L. X.
    Nelson, B. J.
    Ferreira, A.
    APPLIED PHYSICS LETTERS, 2010, 96 (07)
  • [16] Electrochemical storage of lithium multiwalled carbon nanotubes
    Frackowiak, E
    Gautier, S
    Gaucher, H
    Bonnamy, S
    Beguin, F
    CARBON, 1999, 37 (01) : 61 - 69
  • [17] Aqueous Dispersions of Thin Multiwalled Carbon Nanotubes
    I. V. Anoshkin
    O. S. Bazykina
    E. V. Rakova
    E. G. Rakov
    Russian Journal of Physical Chemistry A, Focus on Chemistry, 2008, 82 : 254 - 257
  • [18] Oxidation of multiwalled carbon nanotubes by nitric acid
    Rosca, ID
    Watari, F
    Uo, M
    Akaska, T
    CARBON, 2005, 43 (15) : 3124 - 3131
  • [19] Mechanical and chemical breaking of multiwalled carbon nanotubes
    Niesz, K
    Siska, A
    Vesselényi, I
    Hernadi, K
    Méhn, D
    Galbács, G
    Kónya, Z
    Kiricsi, I
    CATALYSIS TODAY, 2002, 76 (01) : 3 - 10
  • [20] Exploring Multiwalled Carbon Nanotubes for Naproxen Detection
    Montes, Rodrigo H. O.
    Stefano, Jessica S.
    Richter, Eduardo M.
    Munoz, Rodrigo A. A.
    ELECTROANALYSIS, 2014, 26 (07) : 1449 - 1453