A remark on the existence and multiplicity result for a nonlinear elliptic problem involving the p-Laplacian

被引:0
作者
G. A. Afrouzi
S. H. Rasouli
机构
[1] Mazandaran University,Department of Mathematics, Faculty of Basic Sciences
来源
Nonlinear Differential Equations and Applications NoDEA | 2009年 / 16卷
关键词
35J50; 35J55; 35J65; Nonlinear elliptic problem; p-Laplacian; Critical points; Nehari manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, motivated by Wu (J Math Anal Appl 318:253–270, 2006), and using recent ideas from Brown and Wu (J Math Anal Appl 337:1326–1336, 2008), we prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic problem: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} -\Delta_{p}u+m(x)\,u^{p-1}=\lambda \,a(x)\, u^{\alpha-1}+b(x)\,u^{\beta-1}, & x \in \Omega,\\ u=0, & x\in\partial\Omega. \end{array}\right.$$\end{document}Here Δp denotes the p-Laplacian operator defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_{p}z=div\,(|\nabla z|^{p-2}\nabla z),\, p > 2,\Omega\subset \mathbb{R}^N}$$\end{document} is a bounded domain with smooth boundary, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 < \beta < p < \alpha < p* (p*=\frac{pN}{N-p}\, {\rm if}\, N > p,\, p*=\infty\, {\rm if}\, N\leq p),\, \lambda \in \mathbb{R} \setminus \{0\}}$$\end{document} , the weight m(x) is a bounded function with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\| m\|_{\infty} > 0}$$\end{document} and a(x), b(x) are continuous functions which change sign in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\Omega }}$$\end{document}.
引用
收藏
相关论文
共 38 条
[1]  
Alves C.O.(2005)Nehari manifold and existence of positive solutions tob a class of quasilinear problems Nonl. Anal. 60 611-624
[2]  
El Hamidi A.(2005)On a nonlinear eigenvalue Problem in ODE J. Math. Anal. Appl. 303 342-349
[3]  
Afrouzi G.A.(2006)A remark on the uniqueness of positive solutions for Dirichlet problems Nonl. Anal. 64 2773-2777
[4]  
Afrouzi G.A.(1994)Combined effects of concave and convex nonlinearities in some elliptic problems J. Funct. Anal. 122 519-543
[5]  
Rasouli S.H.(1998)A priori bounds and multiple solution for superlinear indefinite elliptic problems J. Differ. Equ. 146 336-374
[6]  
Ambrosetti A.(1992)Some boundary value problems for the Bingham model J. Non-Newtonian Fluid Mech. 41 339-363
[7]  
Brezis H.(1997)On Neuman boundary value problems for some quasilinear equations Electron. J. Differ. Equ. 5 1-11
[8]  
Cerami G.(2005)The Nehari manifold for a semilinear elliptic equation involving a sublinear term Calc. Var. 22 483-494
[9]  
Amman H.(2007)A fibering map approach to a semilinear elliptic boundary value problem Electron. J. Differ. Equ. 69 1-9
[10]  
Lopez-Gomez J.(2008)A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function J. Math. Anal. Appl. 337 1326-1336