Quotients of surface groups and homology of finite covers via quantum representations

被引:0
|
作者
Thomas Koberda
Ramanujan Santharoubane
机构
[1] University of Virginia,Department of Mathematics
[2] Institut de Mathématiques de Jussieu (UMR 7586 du CNRS),undefined
[3] Equipe Topologie et Géométrie Algébriques,undefined
来源
Inventiones mathematicae | 2016年 / 206卷
关键词
Boundary Component; Surface Group; Finite Order; Mapping Class Group; Primitive Root;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for each sufficiently complicated orientable surface S, there exists an infinite image linear representation ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} of π1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1(S)$$\end{document} such that if γ∈π1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in \pi _1(S)$$\end{document} is freely homotopic to a simple closed curve on S, then ρ(γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (\gamma )$$\end{document} has finite order. Furthermore, we prove that given a sufficiently complicated orientable surface S, there exists a regular finite cover S′→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S'\rightarrow S$$\end{document} such that H1(S′,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1(S',\mathbb {Z})$$\end{document} is not generated by lifts of simple closed curves on S, and we give a lower bound estimate on the index of the subgroup generated by lifts of simple closed curves. We thus answer two questions posed by Looijenga, and independently by Kent, Kisin, Marché, and McMullen. The construction of these representations and covers relies on quantum SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {SO}(3)$$\end{document} representations of mapping class groups.
引用
收藏
页码:269 / 292
页数:23
相关论文
共 19 条
  • [1] Representations of surface groups with finite mapping class group orbits
    Biswas, Indranil
    Koberda, Thomas
    Mj, Mahan
    Santharoubane, Ramanujan
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 241 - 250
  • [2] MOVING HOMOLOGY CLASSES IN FINITE COVERS OF GRAPHS
    Farb, Benson
    Hensel, Sebastian
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 605 - 615
  • [3] Canonical representations of surface groups
    Landesman, Aaron
    Litt, Daniel
    ANNALS OF MATHEMATICS, 2024, 199 (02) : 823 - 897
  • [4] Finite groups and quantum physics
    V. V. Kornyak
    Physics of Atomic Nuclei, 2013, 76 : 240 - 257
  • [5] Finite groups and quantum physics
    Kornyak, V. V.
    PHYSICS OF ATOMIC NUCLEI, 2013, 76 (02) : 240 - 257
  • [6] Incompressible solvable representations of surface groups
    DeBlois, Jason
    Gomez, Daniel
    TOPOLOGY AND ITS APPLICATIONS, 2017, 229 : 200 - 212
  • [7] Reducibility of Quantum Representations of Mapping Class Groups
    Andersen, Jorgen Ellegaard
    Fjelstad, Jens
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (03) : 215 - 239
  • [8] Reducibility of Quantum Representations of Mapping Class Groups
    Jørgen Ellegaard Andersen
    Jens Fjelstad
    Letters in Mathematical Physics, 2010, 91 : 215 - 239
  • [9] Stable homology of surface diffeomorphism groups made discrete
    Nariman, Sam
    GEOMETRY & TOPOLOGY, 2017, 21 (05) : 3047 - 3092
  • [10] Counting homomorphisms from surface groups to finite groups
    Klug, Michael R.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 141 - 153