This is a continuation of the author’s paper “Convexity properties of some entropies”, published in Raşa (Results Math 73:105, 2018). We consider the sum Fn(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_n(x)$$\end{document} of the squared fundamental Bernstein polynomials of degree n, in relation with Rényi entropy and Tsallis entropy for the binomial distribution with parameters n and x. Several functional equations and inequalities for these functions are presented. In particular, we give a new and simpler proof of a conjecture asserting that Fn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_n$$\end{document} is logarithmically convex. New combinatorial identities are obtained as a byproduct. Rényi entropies and Tsallis entropies for more general families of probability distributions are considered. The paper ends with three new conjectures.
机构:
Sungkyunkwan Univ, Dept Math, Suwon 440746, South KoreaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
Das, Kinkar Ch
Shi, Yongtang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
机构:
Kyoto Univ, Dept Math, Kyoto 6068502, Japan
Max Planck Inst Math, D-53111 Bonn, GermanyKyoto Univ, Dept Math, Kyoto 6068502, Japan
Ohta, Shin-ichi
Takatsu, Asuka
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, FranceKyoto Univ, Dept Math, Kyoto 6068502, Japan