Extensions of toric line bundles

被引:0
作者
Klaus Altmann
Amelie Flatt
Lutz Hille
机构
[1] FU Berlin,Institut für Mathematik
[2] HU Berlin,Institut für Mathematik
[3] Mathematisches Institut der Universität Münster,undefined
来源
Mathematische Zeitschrift | 2023年 / 304卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For any two nef line bundles L+:=OX(Δ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}^+ :={{\mathcal {O}}}_X(\Delta ^+)$$\end{document} and L-:=OX(Δ-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}^- :={{\mathcal {O}}}_X(\Delta ^-)$$\end{document} on a toric variety X represented by lattice polyhedra Δ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^+$$\end{document} respectively Δ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^-$$\end{document}, we present the universal equivariant extension of L-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}^-$$\end{document} by L+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}^+$$\end{document} under use of the connected components of the set theoretic difference Δ-\Δ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^-\setminus \Delta ^+$$\end{document}.
引用
收藏
相关论文
共 15 条
[1]  
Altmann K(2020)Immaculate line bundles on toric varieties Pure Appl. Math. Q. 16 1147-1217
[2]  
Buczyński J(2020)Displaying the cohomology of toric line bundles Izvestiya Math. 84 683-693
[3]  
Kastner L(1978)The geometry of toric varieties Russ. Math. Surv. 33 97-154
[4]  
Winz A-L(1970)Sous-groupes algébriques de rang maximum du groupe de cremona Ann. Sci. Ecol. Norm. Sup. 4e Sér. 3 507-588
[5]  
Altmann K(2014)Toric vector bundles and parliaments of polytopes Trans. Am. Math. Soc. 370 09-137
[6]  
Ploog D(1989)Toric bundles and problems of linear algebra Funct. Anal. Appl. 23 135-375
[7]  
Danilov VI(1990)Equivariant bundles on toral varieties Math. USSR. Izvestija 35 337-36
[8]  
Demazure M(2006)Toric vector bundles, branched covers of fans, and the resolution property J. Algebr. Geom. 18 1-1213
[9]  
Di Rocco S(2008)Moduli of toric vector bundles Compos. Math. 144 1199-undefined
[10]  
Jabbusch K(undefined)undefined undefined undefined undefined-undefined