First-Principles Study on Stacking Fault Energy of γ-Fe–Mn Alloys

被引:0
作者
Chengjun Wang
Wujie Zu
Hao Wang
Yang Wang
机构
[1] Shanghai University,State Key Laboratory of Advanced Special Steels, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering
[2] Shanghai University,School of Computer Engineering and Science
来源
Metals and Materials International | 2021年 / 27卷
关键词
γ-Fe–Mn alloys; Stacking fault energy; Antiferromagnetic; First-principles;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3205 / 3213
页数:8
相关论文
共 170 条
[11]  
Ponge D(2011)Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel Scr. Mater. 64 649-652
[12]  
Raabe D(1994)Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity Mater. Sci. Technol. 10 964-970
[13]  
Lee S-M(2013)Twinning-induced plasticity aided high ductile duplex stainless steel Metall. Mater. Trans. A 44 597-601
[14]  
Lee Y-K(2003)Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes ISIJ Int. 43 438-446
[15]  
Lee S-I(2015)Determination of the deformation mechanism of Fe–Mn alloys Met. Mater. Int. 21 227-231
[16]  
Hwang B(2013)Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel Metall. Mater. Trans. A 45A 709-716
[17]  
Kuzmina M(2016)Effect of thermal lattice expansion on the stacking fault energies of fcc Fe and Fe75Mn25 alloy Phys. Rev. B Condens. Matter. 93 054111-360
[18]  
Herbig M(2000)Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system Metall. Mater. Trans. A 31 355-1152
[19]  
Ponge D(1976)Carbon effect on austenite stacking faults energy in manganese steels Phys. Met. Metallogr. 42 126-175
[20]  
Sandlobes S(1974)Einfluß der Stapelfehlerenergie auf den kristallographischen Umgitterungsmechanismus der γ/α-Umwandlung in hochlegierten Stählen Krist. Tech. 9 1141-608