Approximate Homomorphisms of Ternary Semigroups

被引:0
作者
M. Amyari
M. S. Moslehian
机构
[1] Islamic Azad University,Department of Mathematics
[2] Ferdowski University,Department of Mathematics
来源
Letters in Mathematical Physics | 2006年 / 77卷
关键词
Ternary semigroup; ternary homomorphism; generalized Hyers–Ulam–Rassias stability; direct method; superstability; Banach algebra;
D O I
暂无
中图分类号
学科分类号
摘要
A mapping f : (G1,[ ]1)→ (G2,[ ]2) between ternary semigroups will be called a ternary homomorphism if f([xyz]1)=[f(x)f(y)f(z)]2. In this paper, we prove the generalized Hyers–Ulam–Rassias stability of mappings of commutative semigroups into Banach spaces. In addition, we establish the superstability of ternary homomorphisms into Banach algebras endowed with multiplicative norms
引用
收藏
页码:1 / 9
页数:8
相关论文
共 24 条
  • [1] Abramov V.(1997)Hypersymmetry: a J. Math. Phys. 38 1650-1669
  • [2] Kerner R.(2005)-graded generalization of supersymmetry Nonlinear Anal. (TAM), 63 42-48
  • [3] Le Roy B.(1979)Stability of Proc. Am. Math. Soc. 74 242-246
  • [4] Baak C.(2004)-homomorphisms Lett. Math. Phys. 67 195-206
  • [5] Moslehian M.S.(1997)The stability of the cosine equation Lett. Math. Phys. 39 127-141
  • [6] Baker J.(1845)Universal differential calculus on ternary algebras Camb. Math. J 4 1-226
  • [7] Bazunova N.(1987)Leibniz and Lie algebra structures for Nambu algebra Abh. Math. Sem. Univ. Hamburg 57 215-436
  • [8] Borowiec A.(1994)The stability of homomorphisms and amenability, with applications to functional equations J. Math. Anal. Appl. 184 431-224
  • [9] Kerner R.(1941)A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings Proc. Nat. Acad. Sci. U.S.A. 27 222-A225
  • [10] Daletskii Y.L.(1997)On the stability of the linear functional equation Class. Quantum Grav. 14 A203-1004