A correction on the determination of the weight enumerator polynomial of some irreducible cyclic codes

被引:0
作者
Gerardo Vega
机构
[1] Universidad Nacional Autónoma de México,Dirección General de Cómputo y de Tecnologías de Información y Comunicación
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Weight distribution; Weight enumerator polynomial; Irreducible cyclic codes; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
A classification that shows explicitly all possible weight enumerator polynomials for every irreducible cyclic code of length n over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, in the particular case where each prime divisor of n is also a divisor of q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, was recently given in Brochero Martínez and Giraldo Vergara (Des Codes Cryptogr 78:703–712, 2016). However, as we will see next, such classification is incomplete. Thus, the purpose of this work is to use an already known identity among the weight enumerator polynomials, in order to complete such classification. As we will see later, by means of this identity, we not only complete, in an easier way, this classification, but we also find out the nature of the weight distributions of the class of irreducible cyclic codes studied in Brochero Martínez and Giraldo Vergara (2016).
引用
收藏
页码:835 / 840
页数:5
相关论文
共 50 条
[41]   Several families of irreducible constacyclic and cyclic codes [J].
Sun, Zhonghua ;
Wang, Xiaoqiang ;
Ding, Cunsheng .
DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (9) :2821-2843
[42]   A General Description for the Weight Distribution of Some Reducible Cyclic Codes [J].
Vega, Gerardo ;
Morales, Luis B. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) :5994-6001
[43]   On period polynomials of degree 2m and weight distributions of certain irreducible cyclic codes [J].
Baoulina, Ioulia N. .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 :319-337
[44]   A construction of q-ary linear codes with irreducible cyclic codes [J].
Ziling Heng ;
Cunsheng Ding .
Designs, Codes and Cryptography, 2019, 87 :1087-1108
[45]   A construction of q-ary linear codes with irreducible cyclic codes [J].
Heng, Ziling ;
Ding, Cunsheng .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) :1087-1108
[46]   The minimum distance of the duals of binary irreducible cyclic codes [J].
Ding, CS ;
Helleseth, T ;
Niederreiter, H ;
Xing, CP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) :2679-2689
[47]   Weight enumerators of all cubic-primitive irreducible cyclic codes of odd prime power length [J].
Bishnoi, Monika ;
Kumar, Pankaj .
FINITE FIELDS AND THEIR APPLICATIONS, 2024, 93
[48]   On the Weight Distribution of the Dual of some Cyclic Codes with Two Non Conjugated Zeros [J].
Vazquez-Fernandez, C. A. ;
Vega-Hernandez, G. .
JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (01) :36-48
[49]   The weight distributions of a class of cyclic codes [J].
Xiong, Maosheng .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (05) :933-945
[50]   On the weight distributions of a class of cyclic codes [J].
Liu, Hongwei ;
Wang, Xiaoqiang ;
Zheng, Dabin .
DISCRETE MATHEMATICS, 2018, 341 (03) :759-771