A correction on the determination of the weight enumerator polynomial of some irreducible cyclic codes

被引:0
作者
Gerardo Vega
机构
[1] Universidad Nacional Autónoma de México,Dirección General de Cómputo y de Tecnologías de Información y Comunicación
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Weight distribution; Weight enumerator polynomial; Irreducible cyclic codes; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
A classification that shows explicitly all possible weight enumerator polynomials for every irreducible cyclic code of length n over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, in the particular case where each prime divisor of n is also a divisor of q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, was recently given in Brochero Martínez and Giraldo Vergara (Des Codes Cryptogr 78:703–712, 2016). However, as we will see next, such classification is incomplete. Thus, the purpose of this work is to use an already known identity among the weight enumerator polynomials, in order to complete such classification. As we will see later, by means of this identity, we not only complete, in an easier way, this classification, but we also find out the nature of the weight distributions of the class of irreducible cyclic codes studied in Brochero Martínez and Giraldo Vergara (2016).
引用
收藏
页码:835 / 840
页数:5
相关论文
共 50 条
[31]   A Note About Two-Weight Non-Irreducible Cyclic Codes [J].
Vega, Gerardo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (04) :2263-2264
[32]   Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes [J].
Moisio, MJ ;
Väänänen, KO .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1244-1249
[33]   The Weight Enumerator Polynomials of the Lifted Codes of the Projective Solomon-Stiffler Codes [J].
Shi, Minjia ;
Li, Shitao ;
Helleseth, Tor .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (09) :6316-6325
[34]   Primitive idempotents of irreducible cyclic codes and self-dual cyclic codes over Galois rings [J].
Wu, Yansheng ;
Yue, Qin ;
Li, Fengwei .
DISCRETE MATHEMATICS, 2018, 341 (06) :1755-1767
[35]   WEIGHT DISTRIBUTIONS OF SOME BINARY PRIMITIVE CYCLIC CODES [J].
WOLFMANN, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (06) :2068-2071
[36]   A characterization of all semiprimitive irreducible cyclic codes in terms of their lengths [J].
Gerardo Vega .
Applicable Algebra in Engineering, Communication and Computing, 2019, 30 :441-452
[37]   A characterization of all semiprimitive irreducible cyclic codes in terms of their lengths [J].
Vega, Gerardo .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (05) :441-452
[38]   The primitive idempotents of irreducible constacyclic codes and LCD cyclic codes [J].
Zexia Shi ;
Fang-Wei Fu .
Cryptography and Communications, 2020, 12 :29-52
[39]   The primitive idempotents of irreducible constacyclic codes and LCD cyclic codes [J].
Shi, Zexia ;
Fu, Fang-Wei .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (01) :29-52
[40]   Several families of irreducible constacyclic and cyclic codes [J].
Zhonghua Sun ;
Xiaoqiang Wang ;
Cunsheng Ding .
Designs, Codes and Cryptography, 2023, 91 :2821-2843