A correction on the determination of the weight enumerator polynomial of some irreducible cyclic codes

被引:0
作者
Gerardo Vega
机构
[1] Universidad Nacional Autónoma de México,Dirección General de Cómputo y de Tecnologías de Información y Comunicación
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Weight distribution; Weight enumerator polynomial; Irreducible cyclic codes; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
A classification that shows explicitly all possible weight enumerator polynomials for every irreducible cyclic code of length n over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, in the particular case where each prime divisor of n is also a divisor of q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, was recently given in Brochero Martínez and Giraldo Vergara (Des Codes Cryptogr 78:703–712, 2016). However, as we will see next, such classification is incomplete. Thus, the purpose of this work is to use an already known identity among the weight enumerator polynomials, in order to complete such classification. As we will see later, by means of this identity, we not only complete, in an easier way, this classification, but we also find out the nature of the weight distributions of the class of irreducible cyclic codes studied in Brochero Martínez and Giraldo Vergara (2016).
引用
收藏
页码:835 / 840
页数:5
相关论文
共 50 条
  • [21] THE WEIGHT DISTRIBUTION OF IRREDUCIBLE CYCLIC CODES ASSOCIATED WITH DECOMPOSABLE GENERALIZED PALEY GRAPHS
    Podesta, Ricardo A.
    Videla, Denis E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, : 446 - 464
  • [22] The weight distributions of irreducible cyclic codes of length 2(n)p(m)
    Sangwan, Monika
    Kumar, Pankaj
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [23] Projective two-weight irreducible cyclic and constacyclic codes
    Wolfmann, J.
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) : 351 - 360
  • [24] Hamming weights in irreducible cyclic codes
    Ding, Cunsheng
    Yang, Jing
    DISCRETE MATHEMATICS, 2013, 313 (04) : 434 - 446
  • [25] On the weight distributions of some cyclic codes
    Zhang, Guanghui
    DISCRETE MATHEMATICS, 2016, 339 (08) : 2070 - 2078
  • [26] Weight Distribution of Some Cyclic Codes
    Choi, Sung-Tai
    Kim, Ji-Youp
    No, Jong-Seon
    Chung, Habong
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [27] The weight distributions of irreducible cyclic codes of length 2m
    Sharma, Anuradha
    Bakshi, Gurmeet K.
    Raka, Madhu
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (04) : 1086 - 1095
  • [28] The weight distribution for any irreducible cyclic code of length
    Vega, Gerardo
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (04) : 363 - 370
  • [29] Weight distribution of some reducible cyclic codes
    Feng, Keqin
    Luo, Jinquan
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) : 390 - 409
  • [30] A note on the weight distribution of some cyclic codes
    Lin, Liren
    Chen, Bocong
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 35 : 78 - 85