A correction on the determination of the weight enumerator polynomial of some irreducible cyclic codes

被引:0
|
作者
Gerardo Vega
机构
[1] Universidad Nacional Autónoma de México,Dirección General de Cómputo y de Tecnologías de Información y Comunicación
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Weight distribution; Weight enumerator polynomial; Irreducible cyclic codes; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
A classification that shows explicitly all possible weight enumerator polynomials for every irreducible cyclic code of length n over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, in the particular case where each prime divisor of n is also a divisor of q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, was recently given in Brochero Martínez and Giraldo Vergara (Des Codes Cryptogr 78:703–712, 2016). However, as we will see next, such classification is incomplete. Thus, the purpose of this work is to use an already known identity among the weight enumerator polynomials, in order to complete such classification. As we will see later, by means of this identity, we not only complete, in an easier way, this classification, but we also find out the nature of the weight distributions of the class of irreducible cyclic codes studied in Brochero Martínez and Giraldo Vergara (2016).
引用
收藏
页码:835 / 840
页数:5
相关论文
共 50 条
  • [1] A correction on the determination of the weight enumerator polynomial of some irreducible cyclic codes
    Vega, Gerardo
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 835 - 840
  • [2] The weight distribution of some irreducible cyclic codes
    Liu, Yang
    Zhang, Yang
    Kong, Zisen
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [3] The weight distribution of some irreducible cyclic codes
    Sharma, Anuradha
    Bakshi, Gurmeet K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (01) : 144 - 159
  • [4] The Weight Distribution of Some Irreducible Cyclic Codes
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (03) : 955 - 960
  • [5] THE WEIGHT DISTRIBUTION OF FAMILIES OF REDUCIBLE CYCLIC CODES THROUGH THE WEIGHT DISTRIBUTION OF SOME IRREDUCIBLE CYCLIC CODES
    Vega, Gerardo
    Cuen-Ramos, Jesus E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (03) : 525 - 533
  • [6] The Weight Enumerator of a Class of Cyclic Codes
    Ma, Changli
    Zeng, Liwei
    Liu, Yang
    Feng, Dengguo
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) : 397 - 402
  • [7] Weight distributions of some irreducible cyclic codes of length n
    Kulvir Riddhi
    Pankaj Singh
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 1073 - 1082
  • [8] Weight distributions of some irreducible cyclic codes of length n
    Riddhi
    Singh, Kulvir
    Kumar, Pankaj
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04) : 1073 - 1082
  • [9] The Weight Enumerator of Three Families of Cyclic Codes
    Zhou, Zhengchun
    Zhang, Aixian
    Ding, Cunsheng
    Xiong, Maosheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 6002 - 6009
  • [10] Weight enumerators of some irreducible cyclic codes of odd length
    Bishnoi, Monika
    Kumar, Pankaj
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (04): : 795 - 809