Ductility reduction factors for steel buildings considering different structural representations

被引:0
作者
Alfredo Reyes-Salazar
Edén Bojórquez
Juan I. Velazquez-Dimas
Arturo López-Barraza
J. Luz Rivera-Salas
机构
[1] Universidad Autónoma de Sinaloa,Facultad de Ingeniería
来源
Bulletin of Earthquake Engineering | 2015年 / 13卷
关键词
Ductility reduction factors; Steel buildings; Perimeter and spatial moment resisting frames; MDOF and SDOF systems; Ductility capacity; Nonlinear time history analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The global ductility parameter (μG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _{G})$$\end{document}, commonly used to represent the capacity of a structure to dissipate energy, and its effects, considered through the ductility reduction factor (Rμ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{\upmu })$$\end{document}, are studied for buildings with moment resisting steel frames (MRSF) which are modeled as complex multi degree of freedom systems. Results indicate that the μG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{G}$$\end{document} value of 4, commonly assumed, cannot be justified, a value between 2.5 and 3 is suggested. The ductility reduction factors associated to global response parameters may be quite different than those of local response parameters, showing the limitation of the commonly used equivalent lateral force procedure (ELFP). The ratio (Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Q)$$\end{document} of Rμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\upmu }$$\end{document} to μG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{G}$$\end{document} is larger for the models with spatial MRSF than for the models with perimeter MRSF since their ductility demands are smaller and/or their ductility reduction factors larger. According to the simplified Newmark and Hall procedure, the Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} ratio should be equal to unity for the structural models under consideration. Based on the results of this study, this ratio cannot be justified. The reason for this is that single degree of freedom systems were used to derive the mentioned simplified procedure, where higher mode and energy dissipation effects cannot be explicitly considered. A value of 0.5 is suggested for Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} for steel buildings with perimeter MRSF in the intermediate and long period regions. The findings of this paper are for the particular structural systems and models used in the study. Much more research is needed to reach more general conclusions.
引用
收藏
页码:1749 / 1771
页数:22
相关论文
共 93 条
  • [1] Ayoub A(2009)Response spectra of degrading structural systems Eng Struc 31 1393-1402
  • [2] Chenouda M(2009)Seismic vulnerability assessment of modular steel buildings J Earthq Eng 105 1065-1088
  • [3] Annan CD(2003)Strength reduction factors for ductile structures with passive energy dissipating devices J Earthq Eng 7 297-325
  • [4] Youssef MA(2010)Energy-based damage index for steel structures Steel Compos Struct Int J 10 331-348
  • [5] El Naggar MH(2000)Refined force reduction factors for seismic design Eng Struct 22 1244-1260
  • [6] Arroyo-Espinoza D(2010)A new application area of ANN and ANFIS: determination of earthquake load reduction factor of prefabricated industrial buildings Civ Eng Environ Syst 27 53-69
  • [7] Teran-Gilmore A(2006)Seismic ductility reduction factors for multi-degree-of-freedom systems Adv Struct Eng 9 591-601
  • [8] Bojorquez E(2002)Overstrength and force reduction factors of multistorey reinforced-concrete buildings Struct Des Tall Build 11 329-351
  • [9] Reyes-Salazar A(1995)Nonlinear seismic analysis of space structures with PR connections Int J Microcomput Civ Eng 10 27-37
  • [10] Terán-Gilmore A(2010)Strength reductions factors for near-fault forward-directivity ground motions Eng Struct 32 273-285