Initial-boundary value problem of the Navier–Stokes equations in the half space with nonhomogeneous data

被引:0
作者
Chang T. [1 ]
Jin B.J. [2 ]
机构
[1] Department of Mathematics, Yonsei University, Seoul
[2] Department of Mathematics, Mokpo National University, Muan-gun
关键词
Homogeneous anisotropic Besov space; Initial-boundary value problem; Navier–Stokes equations; Stokes equations;
D O I
10.1007/s11565-018-0312-8
中图分类号
学科分类号
摘要
This paper discusses the solvability (global in time) of the initial-boundary value problem of the Navier–Stokes equations in the half space when the initial data h∈B˙qσα-2q(R+n) and the boundary data g∈B˙qα-1q,α2-12q(Rn-1×R+) with gn∈B˙q12α(R+;B˙q-1q(Rn-1))∩Lq(R+;B˙α-1q(Rn-1)), for any 0 < α< 2 and q=n+2α+1. Compatibility condition (1.3) is required for h and g. © 2018, Università degli Studi di Ferrara.
引用
收藏
页码:29 / 56
页数:27
相关论文
共 46 条
  • [1] Adams R.A., Fournier J.J.F., Sobolev Spaces, (2003)
  • [2] Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., 12, pp. 623-727, (1959)
  • [3] Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., 17, pp. 35-92, (1964)
  • [4] Amann H., Anisotropic function spaces and maximal regularity for parabolic problems, (2009)
  • [5] Amann H., Nonhomogeneous Navier–Stokes equations with integrable low-rregularity data, Nonlinear Problems in Mathematical Physics and Related Topics, II. 128, Int. Math. Ser, (2002)
  • [6] Amann H., On the strong solvability of the Navier–Stokes equations, J. Math. Fluid Mech., 2, 1, pp. 16-98, (2000)
  • [7] Amann H., Navier–Stokes equations with nonhomogeneous Dirichlet data, J. Nonlinear Math. Phys., 10, pp. 1-11, (2003)
  • [8] Bergh J., Lofstrom J., Interpolation spaces, An Introduction, 223, (1976)
  • [9] Cannone M., Planchon F., Schonbek M., Strong solutions to the incompressible Navier–Stokes equations in the half-space, Commun. Partial Differ. Equ., 25, 5-6, pp. 903-924, (2000)
  • [10] Chae D., Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal., 38, pp. 339-358, (2004)