Generalized Differential Identities of (Semi–)Prime Rings

被引:0
|
作者
Feng Wei
机构
[1] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Generalized differential identity; Generalized derivation; (Semi–)Prime ring; 16R50; 16W25; 16N60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a semiprime ring with characteristic p ≥ 0 and RF be its left Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for an essential ideal of R, then ϕ(Zije(Δj)) is a generalized polynomial identity for RF, where e(Δj) are idempotents in the extended centroid of R determined by Δj. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ϕ(Zij) is a generalized polynomial identity for [R,R]. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ϕ(Zij is a generalized polynomial identity for Q.
引用
收藏
页码:823 / 832
页数:9
相关论文
共 50 条
  • [31] Generalized derivations in prime rings
    Wu W.
    Wan Z.
    Transactions of Tianjin University, 2011, 17 (1) : 75 - 78
  • [32] Generalized derivations of prime rings
    Albas, E
    Argaç, N
    ALGEBRA COLLOQUIUM, 2004, 11 (03) : 399 - 410
  • [33] Generalized Derivations in Prime Rings
    吴伟
    宛昭勋
    Transactions of Tianjin University, 2011, (01) : 75 - 78
  • [34] Certain algebraic identities on prime rings with involution
    Mamouni, A.
    Oukhtite, L.
    Zerra, M.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) : 2976 - 2986
  • [35] GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS
    Albas, Emine
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 3 - 9
  • [36] A RESULT ON GENERALIZED DERIVATIONS IN PRIME RINGS
    Du, Yiqiu
    Wang, Yu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (01): : 81 - 85
  • [37] IDENTITIES WITH GENERALIZED DERIVATIONS IN SEMIPRIME RINGS
    Dhara, Basudeb
    Ali, Shakir
    Pattanayak, Atanu
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 453 - 460
  • [38] A CHARACTERIZATION OF GENERALIZED DERIVATIONS ON PRIME RINGS
    Alahmadi, Adel
    Ali, Shakir
    Khan, Abdul Nadim
    Khan, Mohammad Salahuddin
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3201 - 3210
  • [39] Generalized lie derivations in prime rings
    Hvala, Bojan
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1425 - 1430
  • [40] A study of differential prime rings with involution
    Oukhtite, Lahcen
    Zemzami, Omar Ait
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 133 - 139