Generalized Differential Identities of (Semi–)Prime Rings

被引:0
|
作者
Feng Wei
机构
[1] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Generalized differential identity; Generalized derivation; (Semi–)Prime ring; 16R50; 16W25; 16N60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a semiprime ring with characteristic p ≥ 0 and RF be its left Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for an essential ideal of R, then ϕ(Zije(Δj)) is a generalized polynomial identity for RF, where e(Δj) are idempotents in the extended centroid of R determined by Δj. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ϕ(Zij) is a generalized polynomial identity for [R,R]. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ϕ(Zij is a generalized polynomial identity for Q.
引用
收藏
页码:823 / 832
页数:9
相关论文
共 50 条
  • [21] Some differential identities on prime and semiprime rings and Banach algebras
    Raza, Mohd Arif
    Khan, Mohammad Shadab
    Ur Rehman, Nadeem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 305 - 313
  • [22] Some differential identities on prime and semiprime rings and Banach algebras
    Mohd Arif Raza
    Mohammad Shadab Khan
    Nadeem ur Rehman
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 305 - 313
  • [23] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Bera, Nripendu
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1497 - 1516
  • [24] Generalized Derivations Vanishing on Co-Commutator Identities in Prime Rings
    Dhara, Basudeb
    FILOMAT, 2021, 35 (06) : 1785 - 1801
  • [25] Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings
    Dhara, Basudeb
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 25 - 36
  • [26] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Basudeb Dhara
    Sukhendu Kar
    Nripendu Bera
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1497 - 1516
  • [27] Derivations Vanishing Identities Involving Generalized Derivations and Multilinear Polynomial in Prime Rings
    S. K. Tiwari
    R. K. Sharma
    Mediterranean Journal of Mathematics, 2017, 14
  • [28] Derivations Vanishing Identities Involving Generalized Derivations and Multilinear Polynomial in Prime Rings
    Tiwari, S. K.
    Sharma, R. K.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
  • [29] A quadratic generalized differential identity on Lie ideals of Prime Rings
    Demir, Cagri
    De Filippis, Vincenzo
    Argac, Nurcan
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09) : 1835 - 1847
  • [30] Generalized Derivations on *-prime Rings
    Ashraf, Mohammad
    Jamal, Malik Rashid
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 481 - 488