A parallel fast boundary element method using cyclic graph decompositions

被引:0
作者
Dalibor Lukáš
Petr Kovář
Tereza Kovářová
Michal Merta
机构
[1] VŠB–Technical University of Ostrava,
来源
Numerical Algorithms | 2015年 / 70卷
关键词
Boundary element method; Parallel computing; Graph decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a method of a parallel distribution of densely populated matrices arising in boundary element discretizations of partial differential equations. In our method the underlying boundary element mesh consisting of n elements is decomposed into N submeshes. The related N×N submatrices are assigned to N concurrent processes to be assembled. Additionally we require each process to hold exactly one diagonal submatrix, since its assembling is typically most time consuming when applying fast boundary elements. We obtain a class of such optimal parallel distributions of the submeshes and corresponding submatrices by cyclic decompositions of undirected complete graphs. It results in a method the theoretical complexity of which is O((n/N)log(n/N))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O((n/\sqrt {N})\log (n/\sqrt {N}))$\end{document} in terms of time for the setup, assembling, matrix action, as well as memory consumption per process. Nevertheless, numerical experiments up to n=2744832 and N=273 on a real-world geometry document that the method exhibits superior parallel scalability O((n/N)logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O((n/N)\,\log n)$\end{document} of the overall time, while the memory consumption scales accordingly to the theoretical estimate.
引用
收藏
页码:807 / 824
页数:17
相关论文
共 29 条
  • [1] Bebendorf M(2000)Approximation of boundary element matrices Numer. Math. 86 565-589
  • [2] Bebendorf M(2005)Fast parallel solution of boundary integral equations and related problems Comp. Vis. Sci. 8 121-135
  • [3] Kriemann R(1986)A hierarchical Nature 324 446-449
  • [4] Burnes J(1982) force calculation algorithm SIAM J. Numer. Anal. 19 1260-1262
  • [5] Hut P(2006)Quadrature over a pyramid or cube of integrands with a singularity at a vertex Optim. Methods Softw. 21 135-153
  • [6] Duffy MG(1998)Second-order shape optimization using wavelet BEM SIAM J. Sci. Comput. 20 337-358
  • [7] Eppler K(1989)Parallel hierarchical solvers and preconditioners for boundary element methods Numer. Math. 54 463-491
  • [8] Harbrecht H(1999)On the fast matrix multiplication in the boundary element methods by panel clustering SIAM J. Sci. Comput. 20 359-392
  • [9] Grama A(2012)A fast and highly quality multilevel scheme for partitioning irregular graphs Math. Comp. 82 1721-1731
  • [10] Kumar V(1997)A shape optimization method for nonlinear axisymmetric magnetostatics using a coupling of finite and boundary elements Numer. Meth. Partial Differential Equations 13 283-301