Convex concentration for some additive functionals of jump stochastic differential equations

被引:0
作者
Yutao Ma
Nicolas Privault
机构
[1] Beijing Normal University,School of Mathematical Sciences and Laboratory for Mathematics and Complex Systems
[2] Nanyang Technological University,School of Physical and Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2013年 / 29卷
关键词
Convex concentration inequalities; transportation-information inequalities; stochastic differential equations with jumps; interest rate derivatives; 28A35; 28C20; 60E15; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
Using forward-backward stochastic calculus, we prove convex concentration inequalities for some additive functionals of the solution of stochastic differential equations with jumps admitting an invariant probability measure. As a consequence, transportation-information inequalities are obtained and bounds on option prices for interest rate derivatives are given as an application.
引用
收藏
页码:1449 / 1458
页数:9
相关论文
共 24 条
  • [1] Arnaudon M(2008)Convex ordering for random vectors using predictable representation Potential Anal. 29 327-349
  • [2] Breton J-C(2007)Convex comparison inequalities for exponential jump-diffusion processes Commun. Stoch. Analy. 1 263-277
  • [3] Privault N(2008)Bounds on option prices in point process diffusion models Int. J. Theor. Appl. Finance 11 597-610
  • [4] Breton J-C(2009)Transportation-information inequalities for Markov processes Probab. Th. Relat. Fields 144 669-695
  • [5] Privault N(2006)Convex concentration inequalities via forward-backward stochastic calculus Elect. J. Probab. 11 27pp-303
  • [6] Breton J-C(1973)Markov processes associated with certain integro-differential operators Osaka J. Math. 10 271-103
  • [7] Privault N(1976)Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel Ann. Inst. H. Poincaré Sect. B (N.S.) 12 43-69
  • [8] Guillin A(2009)Spectral gap and convex concentration inequalities for birth-death processes Ann. Inst. H. Poincaré Probab. Stat. 45 58-271
  • [9] Léonard C(1988)A crossing estimate for the canonical process on a Dirichlet space and a tightness result Astérisque 157 249-21
  • [10] Wu L M(2010)Transportation inequalities for stochastic differential equations with jumps Stochastic Process. Appl. 120 2-244