Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise

被引:0
作者
Le Chen
Yaozhong Hu
Kamran Kalbasi
David Nualart
机构
[1] University of Kansas,Department of Mathematics
[2] University of Warwick,Mathematics Institute
来源
Probability Theory and Related Fields | 2018年 / 171卷
关键词
Stochastic heat equation; Feynman–Kac integral; Feynman–Kac formula; Time fractional Gaussian noise; Fractional calculus; Moment bounds; Lyapunov exponents; Intermittency; Primary 60H15; Secondary 60G60; 35R60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the stochastic heat equation driven by time fractional Gaussian noise with Hurst parameter H∈(0,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1/2)$$\end{document}. We establish the Feynman–Kac representation of the solution and use this representation to obtain matching lower and upper bounds for the Lp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\Omega )$$\end{document} moments of the solution.
引用
收藏
页码:431 / 457
页数:26
相关论文
共 50 条
  • [21] Sharp space-time regularity of the solution to stochastic heat equation driven by fractional-colored noise
    Herrell, Randall
    Song, Renming
    Wu, Dongsheng
    Xiao, Yimin
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (04) : 747 - 768
  • [22] Gaussian fluctuations for the stochastic heat equation with colored noise
    Jingyu Huang
    David Nualart
    Lauri Viitasaari
    Guangqu Zheng
    Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 402 - 421
  • [23] Gaussian fluctuations for the stochastic heat equation with colored noise
    Huang, Jingyu
    Nualart, David
    Viitasaari, Lauri
    Zheng, Guangqu
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (02): : 402 - 421
  • [24] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [25] Fractional Kinetic Equation Driven by General Space-Time Homogeneous Gaussian Noise
    Liu, Junfeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3475 - 3499
  • [26] Quenched asymptotics for a 1-d stochastic heat equation driven by a rough spatial noise
    Chakraborty, Prakash
    Chen, Xia
    Gao, Bo
    Tindel, Samy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (11) : 6689 - 6732
  • [27] A note on intermittency for the fractional heat equation
    Balan, Raluca M.
    Conus, Daniel
    STATISTICS & PROBABILITY LETTERS, 2014, 95 : 6 - 14
  • [28] Covariance measure and stochastic heat equation with fractional noise
    Ciprian Tudor
    Mounir Zili
    Fractional Calculus and Applied Analysis, 2014, 17 : 807 - 826
  • [29] Covariance measure and stochastic heat equation with fractional noise
    Tudor, Ciprian
    Zili, Mounir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 807 - 826
  • [30] Bismut formula for a stochastic heat equation with fractional noise
    Yan, Litan
    Yin, Xiuwei
    STATISTICS & PROBABILITY LETTERS, 2018, 137 : 165 - 172