Invariant subspaces for translation, dilation and multiplication semigroups

被引:0
作者
Eva A. Gallardo-Gutiérrez
Jonathan R. Partington
机构
[1] Universidad de Zaragoza e Iuma,Departamento De Matemáticas
[2] University of Leeds,School of Mathematics
来源
Journal d'Analyse Mathématique | 2009年 / 107卷
关键词
Hardy Space; Invariant Subspace; Composition Operator; Universal Operator; Multiplication Semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
We study invariant subspaces in the context of the work of Katavolos and Power [9] and [10] when one of the semigroups considered is replaced by a discrete one. As a consequence, a rather striking connection is given with the study of the lattice of invariant subspaces of composition operators induced by automorphisms of the unit disc acting on the classical Hardy space. As a particular instance, our study concerns the lattice of invariant subspaces of those composition operators induced by hyperbolic automorphisms, and therefore with the Invariant Subspace Problem.
引用
收藏
页码:65 / 78
页数:13
相关论文
共 17 条
[1]  
Beurling A.(1948)On two problems concerning linear transformations in Hilbert space Acta Math. 81 239-255
[2]  
Caradus S. R.(1969)Universal operators and invariant subspaces Proc. Amer. Math. Soc. 23 526-527
[3]  
Chalendar I.(2003)On the structure of invariant subspaces for isometric composition operators on H Arch. Math. (Basel) 81 193-207
[4]  
Partington J.R.(2005) ( Arch. Math. (Basel) 84 258-267
[5]  
Jones M. M.(1997)) and H Math. Proc. Cambridge Philos. Soc. 122 525-539
[6]  
Katavolos A.(2002) (ℂ J. Reine Angew. Math. 552 101-129
[7]  
Power S. C.(1959)) Acta Math. 101 163-178
[8]  
Katavolos A.(1925)Shift invariant subspaces of composition operators on H Proc. London Math. Soc. 23 481-519
[9]  
Power S. C.(1984)The Fourier binest algebra C. R. Mat. Rep. Acad. Sci. Canada 6 279-283
[10]  
Lax P. D.(1987)Translation and dilation invariant subspaces of L J. Funct. Anal. 73 324-344