Shape and Topology Optimization in Stokes Flow with a Phase Field Approach

被引:0
作者
Harald Garcke
Claudia Hecht
机构
[1] Universität Regensburg,Fakultät für Mathematik
来源
Applied Mathematics & Optimization | 2016年 / 73卷
关键词
Shape and topology optimization; Phase field method ; Diffuse interfaces; Stokes flow; Fictitious domain; 35R35; 35Q35; 49Q10; 49Q20; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a new formulation for shape optimization problems in fluids in a diffuse interface setting that can in particular handle topological changes. By adding the Ginzburg–Landau energy as a regularization to the objective functional and relaxing the non-permeability outside the fluid region by introducing a porous medium approach we hence obtain a phase field problem where the existence of a minimizer can be guaranteed. This problem is additionally related to a sharp interface problem, where the permeability of the non-fluid region is zero. In both the sharp and the diffuse interface setting we can derive necessary optimality conditions using only the natural regularity of the minimizers. We also pass to the limit in the first order conditions.
引用
收藏
页码:23 / 70
页数:47
相关论文
共 50 条
  • [31] Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation
    Gain, Arun L.
    Paulino, Glaucio H.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2012, 46 (03) : 327 - 342
  • [32] Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation
    Arun L. Gain
    Glaucio H. Paulino
    Structural and Multidisciplinary Optimization, 2012, 46 : 327 - 342
  • [33] The Darcy-Stokes topology optimization problem
    Wiker, Niclas
    Klarbring, Anders
    Borrvall, Thomas
    IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 551 - +
  • [34] Optimal conduit shape for Stokes flow
    Ceretani, Andrea N.
    Hu, Weiwei
    Rautenberg, Carlos N.
    SYSTEMS & CONTROL LETTERS, 2023, 173
  • [35] RELATING PHASE FIELD AND SHARP INTERFACE APPROACHES TO STRUCTURAL TOPOLOGY OPTIMIZATION
    Blank, Luise
    Garcke, Harald
    Farshbaf-Shaker, M. Hassan
    Styles, Vanessa
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (04) : 1025 - 1058
  • [36] An effective phase field method for topology optimization without the curvature effects
    Xie, Wenxuan
    Xia, Qing
    Yu, Qian
    Li, Yibao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 146 : 200 - 212
  • [37] A parametric level-set approach for topology optimization of flow domains
    Pingen, Georg
    Waidmann, Matthias
    Evgrafov, Anton
    Maute, Kurt
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (01) : 117 - 131
  • [38] The Limits of Porous Materials in the Topology Optimization of Stokes Flows
    Anton Evgrafov
    Applied Mathematics and Optimization, 2005, 52 : 263 - 277
  • [39] The limits of porous materials in the topology optimization of stokes flows
    Evgrafov, A
    APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 52 (03) : 263 - 277
  • [40] Crack propagation in anisotropic brittle materials: From a phase-field model to a shape optimization approach
    Suchan, Tim
    Kandekar, Chaitanya
    Weber, Wolfgang E.
    Welker, Kathrin
    ENGINEERING FRACTURE MECHANICS, 2024, 303