Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications

被引:0
作者
Z. Sadeghi
S. M. Vaezpour
机构
[1] Islamic Azad University,Young Researchers and Elite Club, Roudehen Branch
[2] Amirkabir University of Technology,Department of Mathematics and Computer Sciences
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Fixed point; coupled fixed point; menger probabilistic metric space; –; -contractive mapping; multivalued mappings; volterra integral equation; 54E40; 54E35; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by introducing multivalued (α,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\eta )$$\end{document}–ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-contractive mappings, we obtain new fixed point theorems for multivalued and single-valued mappings and also coupled fixed point theorems in complete Menger PM and partially ordered Menger PM spaces. We have improved, extended and generalized probabilistic version of the very important generalization of the Banach contraction principle. Some examples and also application of our results in metric spaces and an application to existence of solution of Volterra-type integral equation are given to support the obtained results.
引用
收藏
相关论文
共 54 条
[11]  
Fan JX(1994)On some results in fuzzy metric spaces Fuzzy Sets Syst. 64 395-399
[12]  
Ćirić LjB(2014)Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation Appl. Math. Comput. 232 955-967
[13]  
Mihet D(1988)Fixed points in fuzzy metric spaces Fuzzy Sets Syst. 27 385-389
[14]  
Saadati R(1994)Fixed point theorems for multivalued probabilistic Indian J. Pure Appl. Math. 25 825-835
[15]  
Ćirić LjB(2003)-contractions Atti Sem. Mat. Fiz. Modena L I 377-395
[16]  
Cobzas S(2014)Fixed point theorems for single-valued and multivalued mappings in probabilistic metric spaces Fixed Point Theory Appl. 2014 12-2203
[17]  
Egbert RJ(2010)Fixed points for modified fuzzy Nonlinear Anal. 73 2199-229
[18]  
Fang JX(1984)-contractive set-valued mappings in fuzzy metric spaces Fuzzy Sets Syst. 12 215-70
[19]  
Fang JX(2007)On probabilistic Fuzzy Sets Syst. 158 58-425
[20]  
George A(1988)-contractions on Menger spaces Nuner. Math. 52 413-439