Finite-Dimensional Nilpotent Lie Algebras with Central Derivations of Nonminimal Dimensions

被引:0
作者
Seyed Mahdi Moosavinejad
Farshid Saeedi
机构
[1] Islamic Azad University,Department of Mathematics, Mashhad Branch
来源
Vietnam Journal of Mathematics | 2024年 / 52卷
关键词
Central derivation; Inner derivation; Nilpotent Lie algebras; Primary 17B30; Secondary 17B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let L be a finite-dimensional nilpotent Lie algebra and let Derz(L) and C∗(L) denote the set of all central derivations and central derivations map the center of L to zero, respectively. In this paper, we characterize all nilpotent Lie algebras of dimension n(n ≤ 8) that Derz(L) does not have the minimal possible dimension but C∗(L) has the minimal possible dimension.
引用
收藏
页码:211 / 217
页数:6
相关论文
共 20 条
  • [1] Cicalò S(2012)Six-dimensional nilpotent Lie algebras Linear Algebra Appl. 436 163-189
  • [2] de Graaf WA(1963)Derivations of Lie algebras III Duke Math. J. 30 637-645
  • [3] Schneider C(1985)On complete Lie algebras Acta Sci. Mat. Univ. Mankai 2 9-19
  • [4] Leger G(1991)The complete Lie algebras with abelian nilpotent radical Acta Math. Sin. Chin. Ser. 34 191-202
  • [5] Meng DJ(1994)Complete Lie algebras and Heisenberg algebras Commun. Algebra 22 5509-5524
  • [6] Meng DJ(1994)Some results on complete Lie algebras Commun. Algebra 22 5457-5507
  • [7] Meng DJ(1995)On the construction of complete Lie algebras J. Algebra 176 621-637
  • [8] Meng DJ(2018)Derivation subalgebras of Lie algebras Note Mat. 38 105-115
  • [9] Meng DJ(2015)On special subalgebras of derivations of Lie algebras Asian-Eur. J. Math. 8 1550032-343
  • [10] Wang SP(1987)On Lie algebras with only inner derivations J. Algebra 105 341-515