The Neumann problem in graph Lipschitz domains in the plane

被引:0
|
作者
María Jesús Carro
Virginia Naibo
Carmen Ortiz-Caraballo
机构
[1] Universidad Complutense de Madrid,Department of Analysis and Applied Mathematics
[2] Kansas State University,Department of Mathematics
[3] Universidad de Extremadura,Department of Mathematics
来源
Mathematische Annalen | 2023年 / 385卷
关键词
Primary 35J05; 46E30; 42B30; Secondary 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
We study new aspects of the solvability of the classical Neumann boundary value problem in a graph Lipschitz domain in the plane. When the domain is the upper half-plane, the boundary data is assumed to belong to weighted Lebesgue or weighted Lorentz spaces; we show that the solvability of the Neumann problem in these settings may be characterized in terms of Muckenhoupt weights and related weights, respectively. For a general graph Lipschitz domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, as proved in an unpublished work by E. Fabes and C. Kenig, there exists εΩ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _\Omega >0$$\end{document} such that the Neumann problem is solvable with data in Lp(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\partial \Omega )$$\end{document} for 1<p<2+εΩ;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2+\varepsilon _\Omega ;$$\end{document} we review the proof of this result and show that the Neumann problem is solvable at the endpoint 2+εΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+\varepsilon _\Omega $$\end{document} with data in the Lorentz space L2+εΩ,1(∂Ω).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2+\varepsilon _\Omega ,1}(\partial \Omega ).$$\end{document} We present examples of our results in Schwarz–Christoffel Lipschitz domains and related domains.
引用
收藏
页码:17 / 57
页数:40
相关论文
共 50 条