We study new aspects of the solvability of the classical Neumann boundary value problem in a graph Lipschitz domain in the plane. When the domain is the upper half-plane, the boundary data is assumed to belong to weighted Lebesgue or weighted Lorentz spaces; we show that the solvability of the Neumann problem in these settings may be characterized in terms of Muckenhoupt weights and related weights, respectively. For a general graph Lipschitz domain Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document}, as proved in an unpublished work by E. Fabes and C. Kenig, there exists εΩ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon _\Omega >0$$\end{document} such that the Neumann problem is solvable with data in Lp(∂Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p(\partial \Omega )$$\end{document} for 1<p<2+εΩ;\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p<2+\varepsilon _\Omega ;$$\end{document} we review the proof of this result and show that the Neumann problem is solvable at the endpoint 2+εΩ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2+\varepsilon _\Omega $$\end{document} with data in the Lorentz space L2+εΩ,1(∂Ω).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{2+\varepsilon _\Omega ,1}(\partial \Omega ).$$\end{document} We present examples of our results in Schwarz–Christoffel Lipschitz domains and related domains.