Hamiltonian description of vortex systems

被引:0
|
作者
L. I. Piterbarg
机构
[1] University of Southern California,Department of Mathematics
来源
Theoretical and Mathematical Physics | 2020年 / 202卷
关键词
vortex; continuum Hamiltonian system; Poisson bracket; vorticity; two-dimensional hydrodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of two-dimensional ideal hydrodynamics, we define a vortex system as a smooth vorticity function with a few local positive maximums and negative minimums separated by curves of zero vorticity. We discuss the invariants of such structures that follow from the vorticity conservation law and the invertibility of Lagrangian motion. Introducing new functional variables diagonalizing the original noncanonical Poisson bracket, we develop a Hamiltonian formalism for vortex systems.
引用
收藏
页码:412 / 427
页数:15
相关论文
共 50 条
  • [41] Hamiltonian structures in the quantum theory of Hamilton-Dirac systems
    T. S. Ratiu
    O. G. Smolyanov
    Doklady Mathematics, 2015, 91 : 68 - 71
  • [42] Geometric structure of generalized controlled Hamiltonian systems and its application
    Daizhan Cheng
    Zairong Xi
    Qiang Lu
    Shengwei Mei
    Science in China Series E: Technological Sciences, 2000, 43 : 365 - 379
  • [43] Completely integrable Hamiltonian systems on semidirect sums of Lie algebras
    Zhdanova, M. M.
    SBORNIK MATHEMATICS, 2009, 200 (5-6) : 629 - 659
  • [44] Hamiltonian Formulation of Systems Described Using Fractional Singular Lagrangian
    Chuanjing Song
    Om Prakash Agrawal
    Acta Applicandae Mathematicae, 2021, 172
  • [45] Geometric structure of generalized controlled Hamiltonian systems and its application
    Cheng, DZ
    Xi, ZR
    Lu, Q
    Mei, SW
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2000, 43 (04): : 365 - 379
  • [46] Differential-geometric invariants of the Hamiltonian systems of pde's
    Bogoyavlenskij, Oleg
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) : 805 - 817
  • [47] Fermion-induced quantum action of vortex systems
    Langfeld, K
    Moyaerts, L
    Gies, H
    NUCLEAR PHYSICS B, 2002, 646 (1-2) : 158 - 180
  • [48] Paths Clustering and an Existence Result for Stochastic Vortex Systems
    Joaquin Fontbona
    Miguel Martinez
    Journal of Statistical Physics, 2007, 128 : 699 - 719
  • [49] Stokes Plane-Parallel Vortex Systems in Channels
    V. N. Koterov
    Yu. D. Shmyglevskii
    Fluid Dynamics, 2000, 35 (5) : 674 - 681
  • [50] Paths clustering and an existence result for stochastic vortex systems
    Fontbona, Joaquin
    Martinez, Miguel
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (03) : 699 - 719