Experiments on gravity currents propagating on unbounded uniform slopes

被引:0
作者
Albert Dai
Yu-Lin Huang
机构
[1] National Taiwan University,Department of Engineering Science and Ocean Engineering
来源
Environmental Fluid Mechanics | 2020年 / 20卷
关键词
Gravity currents; Deceleration phase; Unbounded uniform slope;
D O I
暂无
中图分类号
学科分类号
摘要
Gravity currents propagating on 12∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^\circ $$\end{document}, 9∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9^\circ $$\end{document}, 6∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document}, 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document} unbounded uniform slopes and on an unbounded horizontal boundary are reported. Results show that there are two stages of the deceleration phase. In the early stage of the deceleration phase, the front location history follows (xf+x0)2=(KIB)1/2(t+tI)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_f+x_0)}^2 = {(K_I B)}^{1/2} (t+t_{I})$$\end{document}, where (xf+x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_f+x_0)$$\end{document} is the front location measured from the virtual origin, KI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_I$$\end{document} an experimental constant, B the total buoyancy, t time and tI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_I$$\end{document} the t-intercept. In the late stage of the deceleration phase for the gravity currents on 12∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^\circ $$\end{document}, 9∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9^\circ $$\end{document}, 6∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document} unbounded uniform slopes, the front location history follows (xf+x0)8/3=KVSB2/3V02/9ν-1/3(t+tVS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_f+x_0)}^{8/3} = K_{VS} {{B}^{2/3} V^{2/9}_0 }{\nu }^{-1/3} ({t+t_{VS}})$$\end{document}, where KVS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{VS}$$\end{document} is an experimental constant, V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_0$$\end{document} the initial volume of heavy fluid, ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} the kinematic viscosity and tVS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{VS}$$\end{document} the t-intercept. In the late stage of the deceleration phase for the gravity currents on a 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document} unbounded uniform slope and on an unbounded horizontal boundary, the front location history follows (xf+x0)4=KVMB2/3V02/3ν-1/3(t+tVM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_f+x_0)}^{4} = K_{VM} {{B}^{2/3} V^{2/3}_0 }{\nu }^{-1/3} ({t+t_{VM}})$$\end{document}, where KVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{VM}$$\end{document} is an experimental constant and tVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{VM}$$\end{document} the t-intercept. Two qualitatively different flow morphologies are identified in the late stage of the deceleration phase. For the gravity currents on 12∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^\circ $$\end{document}, 9∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9^\circ $$\end{document}, 6∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document} unbounded uniform slopes, an ‘active’ head separates from the body of the current. For the gravity currents on a 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document} unbounded uniform slope and on an unbounded horizontal boundary, the gravity currents maintain an integrated shape throughout the motion. Results indicate two possible routes to the final stage of the gravity currents on unbounded uniform slopes.
引用
收藏
页码:1637 / 1662
页数:25
相关论文
共 50 条
  • [31] Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles
    Tokyay, Talia
    Constantinescu, George
    Meiburg, Eckart
    JOURNAL OF FLUID MECHANICS, 2011, 672 : 570 - 605
  • [32] Thixotropic gravity currents
    Hewitt, Duncan R.
    Balmforth, Neil J.
    JOURNAL OF FLUID MECHANICS, 2013, 727 : 56 - 82
  • [33] Entraining gravity currents
    Johnson, Christopher G.
    Hogg, Andrew J.
    JOURNAL OF FLUID MECHANICS, 2013, 731 : 477 - 508
  • [34] Mixing in gravity currents
    Fragoso, A. T.
    Patterson, M. D.
    Wettlaufer, J. S.
    JOURNAL OF FLUID MECHANICS, 2013, 734 : R2
  • [35] Gravity currents down a slope in deceleration phase
    Dai, Albert
    Garcia, Marcelo H.
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2010, 49 (01) : 75 - 82
  • [36] On the velocity of turbidity currents over moderate slopes
    Liapidevskii, Valery Yu
    Dutykh, Denys
    FLUID DYNAMICS RESEARCH, 2019, 51 (03)
  • [37] Mixing in axisymmetric gravity currents
    Samasiri, Peeradon
    Woods, Andrew W.
    JOURNAL OF FLUID MECHANICS, 2015, 782 : R1
  • [38] Dynamics of the head of gravity currents
    Nogueira, Helena I. S.
    Adduce, Claudia
    Alves, Elsa
    Franca, Mario J.
    ENVIRONMENTAL FLUID MECHANICS, 2014, 14 (02) : 519 - 540
  • [39] Mixing in continuous gravity currents
    Sher, Diana
    Woods, Andrew W.
    JOURNAL OF FLUID MECHANICS, 2017, 818 : R41 - R415
  • [40] Sustained gravity currents in a channel
    Hogg, Andrew J.
    Nasr-Azadani, Mohamad M.
    Ungarish, Marius
    Meiburg, Eckart
    JOURNAL OF FLUID MECHANICS, 2016, 798 : 853 - 888