Experiments on gravity currents propagating on unbounded uniform slopes

被引:0
作者
Albert Dai
Yu-Lin Huang
机构
[1] National Taiwan University,Department of Engineering Science and Ocean Engineering
来源
Environmental Fluid Mechanics | 2020年 / 20卷
关键词
Gravity currents; Deceleration phase; Unbounded uniform slope;
D O I
暂无
中图分类号
学科分类号
摘要
Gravity currents propagating on 12∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^\circ $$\end{document}, 9∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9^\circ $$\end{document}, 6∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document}, 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document} unbounded uniform slopes and on an unbounded horizontal boundary are reported. Results show that there are two stages of the deceleration phase. In the early stage of the deceleration phase, the front location history follows (xf+x0)2=(KIB)1/2(t+tI)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_f+x_0)}^2 = {(K_I B)}^{1/2} (t+t_{I})$$\end{document}, where (xf+x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_f+x_0)$$\end{document} is the front location measured from the virtual origin, KI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_I$$\end{document} an experimental constant, B the total buoyancy, t time and tI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_I$$\end{document} the t-intercept. In the late stage of the deceleration phase for the gravity currents on 12∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^\circ $$\end{document}, 9∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9^\circ $$\end{document}, 6∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document} unbounded uniform slopes, the front location history follows (xf+x0)8/3=KVSB2/3V02/9ν-1/3(t+tVS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_f+x_0)}^{8/3} = K_{VS} {{B}^{2/3} V^{2/9}_0 }{\nu }^{-1/3} ({t+t_{VS}})$$\end{document}, where KVS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{VS}$$\end{document} is an experimental constant, V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_0$$\end{document} the initial volume of heavy fluid, ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} the kinematic viscosity and tVS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{VS}$$\end{document} the t-intercept. In the late stage of the deceleration phase for the gravity currents on a 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document} unbounded uniform slope and on an unbounded horizontal boundary, the front location history follows (xf+x0)4=KVMB2/3V02/3ν-1/3(t+tVM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_f+x_0)}^{4} = K_{VM} {{B}^{2/3} V^{2/3}_0 }{\nu }^{-1/3} ({t+t_{VM}})$$\end{document}, where KVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{VM}$$\end{document} is an experimental constant and tVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{VM}$$\end{document} the t-intercept. Two qualitatively different flow morphologies are identified in the late stage of the deceleration phase. For the gravity currents on 12∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12^\circ $$\end{document}, 9∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9^\circ $$\end{document}, 6∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document} unbounded uniform slopes, an ‘active’ head separates from the body of the current. For the gravity currents on a 3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^\circ $$\end{document} unbounded uniform slope and on an unbounded horizontal boundary, the gravity currents maintain an integrated shape throughout the motion. Results indicate two possible routes to the final stage of the gravity currents on unbounded uniform slopes.
引用
收藏
页码:1637 / 1662
页数:25
相关论文
共 50 条
  • [21] A numerical study of the frontal region of gravity currents propagating on a free-slip boundary
    A. Scotti
    Theoretical and Computational Fluid Dynamics, 2008, 22 : 383 - 402
  • [22] LES of Lock-Exchange Gravity Currents Propagating into a Fully-Vegetated Channel
    Ozan, A. Yuksel
    Constantinescu, George
    PROCEEDINGS OF THE 35TH IAHR WORLD CONGRESS, VOLS I AND II, 2013, : 6162 - 6167
  • [23] Experiments on the sedimentation front in steady particle-driven gravity currents
    Lippert, Martin C.
    Woods, Andrew W.
    JOURNAL OF FLUID MECHANICS, 2020, 889
  • [24] Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles
    Tokyay, Talia
    Constantinescu, George
    Meiburg, Eckart
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (05) : 2752 - 2768
  • [25] Gravity currents propagating into two-layer stratified fluids: vorticity-based models
    Khodkar, M. A.
    Nasr-Azadani, M. M.
    Meiburg, E.
    JOURNAL OF FLUID MECHANICS, 2018, 844 : 994 - 1025
  • [26] Tail structure and bed friction velocity distribution of gravity currents propagating over an array of obstacles
    Tokyay, Talia
    Constantinescu, George
    Meiburg, Eckart
    JOURNAL OF FLUID MECHANICS, 2012, 694 : 252 - 291
  • [27] Numerical experiments of partial-depth colliding gravity currents using LES
    Angelos Kokkinos
    Panagiotis Prinos
    Environmental Fluid Mechanics, 2022, 22 : 1081 - 1105
  • [28] The propagation of gravity currents in a circular cross-section channel:experiments and theory
    Longo, S.
    Ungarish, M.
    Di Federico, V.
    Chiapponi, L.
    Maranzoni, A.
    JOURNAL OF FLUID MECHANICS, 2015, 764 : 513 - 537
  • [29] Numerical experiments of partial-depth colliding gravity currents using LES
    Kokkinos, Angelos
    Prinos, Panagiotis
    ENVIRONMENTAL FLUID MECHANICS, 2022, 22 (05) : 1081 - 1105
  • [30] Free-surface gravity currents propagating in an open channel containing a porous layer at the free surface
    Yuksel-Ozan, Ayse
    Constantinescu, George
    Nepf, Heidi
    JOURNAL OF FLUID MECHANICS, 2016, 809 : 601 - 627