A short review on the advancements in electroplating of CuInGaSe2 thin films

被引:23
作者
Chandran R. [1 ]
Panda S.K. [2 ]
Mallik A. [1 ]
机构
[1] Electrometallurgy and Corrosion Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela, 769 008, Odisha
[2] Electroplating and Metal Finishing Technology Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630 003, Tamilnadu
关键词
Chalcopyrite; Electrodeposition; Solar cells; Thin films;
D O I
10.1007/s40243-018-0112-1
中图分类号
学科分类号
摘要
Thin-film solar cell devices based on copper indium gallium diselenide (CIGSe) chalcogenide materials fabricated by vacuum-based deposition techniques have already achieved lab scale efficiency beyond 21%. For industrial-scale applications, non-vacuum deposition technique such as electrodeposition and screen printing is considered to be suitable approaches for reducing the device fabrication cost. Moreover, electrodeposition has the potential to prepare large area thin films as it requires cheap raw material sources and equipment capital. Hence, it is imperative to understand the current status and advancements in the electroplating techniques of the CIGSe thin films. This article reviews on the experimental advances in electroplating of ternary CuInSe2 and quaternary CIGSe. Various approaches in electrodeposition, influential experimental parameters, and the deposition mechanisms which are related to the final cell efficiency are discussed in detail. © 2018, The Author(s).
引用
收藏
相关论文
共 122 条
[1]  
Badawy Waheed A., A review on solar cells from Si-single crystals to porous materials and quantum dots, J. Adv. Res., 6, pp. 123-132, (2015)
[2]  
Brown G.F., Wu J., Third generation photovoltaics, Laser Photon. Rev., 3, pp. 394-405, (2009)
[3]  
Pagliaro M., Ciriminna R., Palmisano G., Flexible solar cells, Chemsuschem, 1, pp. 880-891, (2008)
[4]  
Chirila A., Reinhard P., Pianezzi F., Bloesch P., Uhl A.R., Fella C., Kranz L., Keller D., Gretener C., Hagendorfer H., Jaeger D., Erni R., Nishiwaki S., Buecheler S., Tiwari N., Potassium-induced surface modification of Cu(In, Ga)Se<sub>2</sub> thin films for high-efficiency solar cells, Nat. Mater., 12, (2013)
[5]  
Reinhard P., Bissig B., Pianezzi F., Avancini E., Hagendorfer H., Keller D., Fuchs P., Dobeli M., Vigo C., Crivelli P., Nishiwaki S., Buecheler S., Tiwari A.N., Features of KF and NaF postdeposition treatments of Cu(In, Ga)Se<sub>2</sub> absorbers for high efficiency thin film solar cells, Chem. Mater., 27, pp. 5755-5764, (2015)
[6]  
Jackson P., Wuerz R., Hariskos D., Lotter E., Witte W., Powalla M., Effects of heavy alkali elements in Cu(In, Ga)Se<sub>2</sub> solar cells with efficiencies up to 22.6%, Phys. Status Solidi RRL, 10, pp. 583-586, (2016)
[7]  
Friedlmeier T.M., Jackson P., Bauer A., Hariskos D., Kiowski O., Wuerz R., Powalla M., Improved photocurrent in Cu(In, Ga)Se<sub>2</sub> solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free, IEEE J. Photovolt., 5, pp. 1487-1491, (2015)
[8]  
Kamada R., Yagioka T., Adachi S., Handa A., Tai K.F., Kato T., Sugimoto H., New world record Cu(In,Ga)(Se,S)<sub>2</sub> thin film solar cell efficiency beyond 22%, IEEE 43Rd Photovoltaic Specialists Conference
[9]  
Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D., Levi D.H., Ho-Baillie A.W.Y., Solar cell efficiency tables (version 49), Prog. Photovolt. Res. Appl., 25, pp. 3-13, (2017)
[10]  
Aksu S., Pinarbasi M., Electrodeposition methods and chemistries for deposition of CIGS precursor thin films, 37Th IEEE Photovoltaic Specialists Conference, Seattle, (2011)