Percolativity of Porous Media

被引:0
|
作者
R. Hilfer
J. Hauskrecht
机构
[1] Universität Stuttgart,
来源
Transport in Porous Media | 2022年 / 145卷
关键词
Connectivity; Percolation; Upscaling; Local porosity theory; Porous media; Pore scale transport; Pore scale geometry; Anisotropy; Geometric characterization;
D O I
暂无
中图分类号
学科分类号
摘要
Connectivity and connectedness are nonadditive geometric functionals on the set of pore scale structures. They determine transport of mass, volume or momentum in porous media, because without connectivity there cannot be transport. Percolativity of porous media is introduced here as a geometric descriptor of connectivity, that can be computed from the pore scale and persists to the macroscale through a suitable upscaling limit. It is a measure that combines local percolation probabilities with a probability density of ratios of eigenvalues of the tensor of local percolating directions. Percolativity enters directly into generalized effective medium approximations. Predictions from these generalized effective medium approximations are found to be compatible with apparently anisotropic Archie correlations observed in experiment.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [1] Percolativity of Porous Media
    Hilfer, R.
    Hauskrecht, J.
    TRANSPORT IN POROUS MEDIA, 2022, 145 (01) : 1 - 12
  • [2] Averaged Boltzmann's Kinetics for Colloidal Transport in Porous Media
    Russell, T.
    Dinariev, O. Yu
    Pessoa Rego, L. A.
    Bedrikovetsky, P.
    WATER RESOURCES RESEARCH, 2021, 57 (03)
  • [3] Inferring pore connectivity from sorption hysteresis in multiscale porous media
    Pinson, Matthew B.
    Zhou, Tingtao
    Jennings, Hamlin M.
    Bazant, Martin Z.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 532 : 118 - 127
  • [4] Macroscopic model for solidification in porous media
    Moussa, N.
    Goyeau, B.
    Duval, H.
    Gobin, D.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 : 704 - 715
  • [5] Multiscale Characterization of Wettability in Porous Media
    Armstrong, Ryan T.
    Sun, Chenhao
    Mostaghimi, Peyman
    Berg, Steffen
    Ruecker, Maja
    Luckham, Paul
    Georgiadis, Apostolos
    McClure, James E.
    TRANSPORT IN POROUS MEDIA, 2021, 140 (01) : 215 - 240
  • [6] A Geometrical Study of the Tortuosity of Anisotropic Porous Media
    L. Pisani
    Transport in Porous Media, 2016, 114 : 201 - 211
  • [7] Theory and Applications of Macroscale Models in Porous Media
    Battiato, Ilenia
    Ferrero, Peter T.
    O'Malley, Daniel
    Miller, Cass T.
    Takhar, Pawan S.
    Valdes-Parada, Francisco J.
    Wood, Brian D.
    TRANSPORT IN POROUS MEDIA, 2019, 130 (01) : 5 - 76
  • [8] Effective Forchheimer Coefficient for Layered Porous Media
    Alessandro Lenci
    Farhad Zeighami
    Vittorio Di Federico
    Transport in Porous Media, 2022, 144 : 459 - 480
  • [9] Theory and Applications of Macroscale Models in Porous Media
    Ilenia Battiato
    Peter T. Ferrero V
    Daniel O’ Malley
    Cass T. Miller
    Pawan S. Takhar
    Francisco J. Valdés-Parada
    Brian D. Wood
    Transport in Porous Media, 2019, 130 : 5 - 76
  • [10] Effective Forchheimer Coefficient for Layered Porous Media
    Lenci, Alessandro
    Zeighami, Farhad
    Di Federico, Vittorio
    TRANSPORT IN POROUS MEDIA, 2022, 144 (02) : 459 - 480