Materials science under extreme conditions of pressure and strain rate

被引:0
作者
B. A. Remington
G. Bazan
J. Belak
E. Bringa
J. D. Colvin
M. J. Edwards
S. G. Glendinning
D. H. Kalantar
M. Kumar
B. F. Lasinski
K. T. Lorenz
J. M. McNaney
S. M. Pollaine
D. Rowley
J. S. Stölken
S. V. Weber
W. G. Wolfer
M. Caturla
D. S. Ivanov
L. V. Zhigilei
B. Kad
M. A. Meyers
M. Schneider
D. D. Meyerhofer
B. Yaakobi
J. S. Wark
机构
[1] the Lawrence Livermore National Laboratory,the Department of Materials Science and Engineering
[2] the Department of Applied Physics,the Department of Mechanical and Aerospace Engineering
[3] University of Virginia,the Clarendon Laboratory, Department of Physics
[4] University of California,undefined
[5] the Laboratory for Laser Energetics,undefined
[6] University of Oxford,undefined
来源
Metallurgical and Materials Transactions A | 2004年 / 35卷
关键词
Material Transaction; High Strain Rate; Grain Boundary; Lawrence Livermore National Laboratory; Mobile Dislocation Density;
D O I
暂无
中图分类号
学科分类号
摘要
Solid-state dynamics experiments at very high pressures and strain rates are becoming possible with high-power laser facilities, albeit over brief intervals of time and spatially small scales. To achieve extreme pressures in the solid state requires that the sample be kept cool, with Tsample<Tmelt. To this end, a shockless, plasma-piston “drive” has been developed on the Omega laser, and a staged shock drive was demonstrated on the Nova laser. To characterize the drive, velocity interferometer measurements allow the high pressures of 10 to 200 GPa (0.1 to 2 Mbar) and strain rates of 106 to 108 s−1 to be determined. Solid-state strength in the sample is inferred at these high pressures using the Rayleigh-Taylor (RT) instability as a “diagnostic.” Lattice response and phase can be inferred for single-crystal samples from time-resolved X-ray diffraction. Temperature and compression in polycrystalline samples can be deduced from extended X-ray absorption fine-structure (EXAFS) measurements. Deformation mechanisms and residual melt depth can be identified by examining recovered samples. We will briefly review this new area of laser-based materials-dynamics research, then present a path forward for carrying these solid-state experiments to much higher pressures, P>103 GPa (10 Mbar), on the National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory.
引用
收藏
页码:2587 / 2607
页数:20
相关论文
共 188 条
[1]  
Dorn J.E.(1964)undefined Trans. TMS-AIME 230 1052-1052
[2]  
Rajnak S.(1967)undefined Can. J. Phys. 45 983-983
[3]  
Guyot P.(1983)undefined ASME J. Eng. Mater. Technol. 105 42-42
[4]  
Dorn J.E.(1987)undefined J. Appl. Phys. 61 1816-1816
[5]  
Johnson G.R.(1990)undefined J. Appl. Phys. 68 915-915
[6]  
Hoegfeldt J.M.(1988)undefined Acta Metall. 36 81-81
[7]  
Lindholm U.S.(1977)undefined J. Mater. Sci. 12 1666-1666
[8]  
Nagy A.(1987)undefined Acta Metall. 35 2865-2865
[9]  
Zerilli F.J.(1989)undefined J. Appl. Phys 65 1528-1528
[10]  
Armstrong R.W.(1980)undefined J. Appl. Phys 51 1498-1498