Estimation of a normal mean relative to balanced loss functions

被引:0
作者
N. Sanjari Farsipour
A. Asgharzadeh
机构
[1] Shiraz University,Department of Statics
来源
Statistical Papers | 2004年 / 45卷
关键词
Admissibility; Balanced loss function; Bayes estimtor; Inadmissibility; Weighted balanced loss function;
D O I
暂无
中图分类号
学科分类号
摘要
LetX1,…,Xnbe a random sample from a normal distribution with mean θ and variance σ2. The problem is to estimate θ with Zellner's (1994) balanced loss function,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_B \left( {\hat \theta ,\theta } \right) = \frac{\omega }{n}\sum {_1^n \left( {X_i - \hat \theta } \right)^2 } + \left( {1 - w} \right)\left( {\theta ,\hat \theta } \right)^2 $$ \end{document}% MathType!End!2!1!, where 0<ω<1. It is shown that the sample mean\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar X$$ \end{document}% MathType!End!2!1!, is admissible. More generally, we investigate the admissibility of estimators of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha \bar X + b$$ \end{document}% MathType!End!2!1! under\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_B \left( {\hat \theta ,\theta } \right)$$ \end{document}% MathType!End!2!1!. We also consider the weighted balanced loss function,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_W \left( {\hat \theta ,\theta } \right) = \omega q\left( \theta \right)\frac{{\sum {_1^n \left( {X_i - \hat \theta } \right)^2 } }}{n} + \left( {1 - w} \right)q\left( \theta \right)\left( {\theta ,\hat \theta } \right)^2 $$ \end{document}% MathType!End!2!1!, whereq(θ) is any positive function of θ, and the class of admissible linear estimators is obtained under such loss withq(θ) =eθ.
引用
收藏
页码:279 / 286
页数:7
相关论文
共 11 条
  • [1] Blyth C.R.(1951)On minimax statistical decision procedures and their admissibility Ann. Math. Statist. 22 22-42
  • [2] Chung Y.(1997)Simultaneous estimation of the multivariate normal mean under balanced loss function Commun. Statist-Theory Meth. 26 1599-1611
  • [3] Kim C.(1998)Linear estimators of a Poisson mean under balanced loss functions Statistics & Decisions 16 245-257
  • [4] Chung Y.(1999)On estimation with balanced loss functions Statistics & Probability Letters 45 97-101
  • [5] Kim C.(1966)On the admissibility of linear estimates for estimating the mean of distribution of the one parameter exponential family Calc. Statist. Assoc. Bull. 15 14-19
  • [6] Song S.(1958)Admissibility for estimation with quadratic loss Ann. Math. Statist. 29 406-436
  • [7] Dey D.K.(undefined)undefined undefined undefined undefined-undefined
  • [8] Ghosh M.(undefined)undefined undefined undefined undefined-undefined
  • [9] Strawderman W.(undefined)undefined undefined undefined undefined-undefined
  • [10] Gupta M.K.(undefined)undefined undefined undefined undefined-undefined