Uniform existence of the integrated density of states for models on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^d$$\end{document}

被引:0
作者
Daniel Lenz
Peter Müller
Ivan Veselić
机构
[1] Fakultät für Mathematik,
[2] Institut für Theoretische Physik,undefined
[3] Emmy-Noether-Programme of the Deutsche Forschungsgemeinschaft & Fakultät für Mathematik,undefined
关键词
Random Schrödinger operator; integrated density of states; uniform ergodic theorem; Primary 37A30, 81Q10; Secondary 34P05, 47B80, 47N50;
D O I
10.1007/s11117-008-2238-3
中图分类号
学科分类号
摘要
We provide an ergodic theorem for certain Banach-space valued functions on structures over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^d$$\end{document}, which allow for existence of frequencies of finite patterns. As an application we obtain existence of the integrated density of states for associated discrete finite-range operators in the sense of convergence of the distributions with respect to the supremum norm. These results apply to various examples including periodic operators, percolation models and nearest-neighbour hopping on the set of visible points. Our method gives explicit bounds on the speed of convergence in terms of the speed of convergence of the underlying frequencies. It uses neither von Neumann algebras nor a framework of random operators on a probability space.
引用
收藏
页码:571 / 589
页数:18
相关论文
共 14 条
[1]  
Baake M.(2000)Diffraction from visible lattice points and kth-power free integers Discrete Math. 221 3-42
[2]  
Moody R. V.(1991)Lattice gas models on self-similar aperiodic tilings Rev. Math. Phys. 3 163-221
[3]  
Pleasants P. A. B.(2006)Spectral properties of the Laplacian on bond-percolation graphs Math. Z. 252 899-916
[4]  
Geerse C. P. M.(2003)Discontinuities of the integrated density of states for random operators on Delone sets Commun. Math. Phys. 241 235-243
[5]  
Hof A.(2006)An ergodic theorem for Delone dynamical systems and existence of the integrated density of states J. d’ Analyse Math. 97 1-23
[6]  
Kirsch W.(2007)Spectral asymptotics of the Laplacian on supercritical bond-percolation graphs J. Funct. Anal. 252 233-246
[7]  
Müller P.(undefined)undefined undefined undefined undefined-undefined
[8]  
Klassert S.(undefined)undefined undefined undefined undefined-undefined
[9]  
Lenz D.(undefined)undefined undefined undefined undefined-undefined
[10]  
Stollmann P.(undefined)undefined undefined undefined undefined-undefined