First-order formalism of holographic Wilsonian renormalization group: Langevin equation

被引:0
作者
Jae-Hyuk Oh
机构
[1] Hanyang University,Department of Physics
来源
Journal of the Korean Physical Society | 2021年 / 79卷
关键词
Stochastic quantization; Holographic Wilsonian RG; Langevin equation; Multi-trace operators;
D O I
暂无
中图分类号
学科分类号
摘要
We study a mathematical relationship between holographic Wilsonian renormalization group and stochastic quantization framework. We extend the original proposal given in arXiv:1209.2242 to interacting theories. The original proposal suggests that fictitious time (or stochastic time) evolution of stochastic 2-point correlation function will be identical to the radial evolution of the double-trace operator of certain classes of holographic models, which are free theories in AdS space. We study holographic gravity models with interactions in AdS space, and establish a map between the holographic renormalization flow of multi-trace operators and stochastic n-point functions. To give precise examples, we extensively study conformally coupled scalar theory in AdS6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AdS}_6$$\end{document}. What we have found is that the stochastic time t dependent 3-point function obtained from Langevin equation with its Euclidean action being given by SE=2Ios\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_E=2I_{os}$$\end{document} is identical to holographic renormalization group evolution of holographic triple-trace operator as its energy scale r changes once an identification of t=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=r$$\end{document} is made. Ios\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{os}$$\end{document} is the on-shell action of holographic model of conformally coupled scalar theory at the AdS boundary. We argue that this can be fully extended to mathematical relationship between multi-point functions and multi-trace operators in each framework.
引用
收藏
页码:903 / 917
页数:14
相关论文
共 22 条
[1]  
Parisi G(1981)undefined Sci. Sin. 24 483-undefined
[2]  
Wu YS(1987)undefined Phys. Rep. 152 227-undefined
[3]  
Damgaard PH(2012)undefined JHEP 1211 144-undefined
[4]  
Huffel H(2013)undefined JHEP 1310 170-undefined
[5]  
Oh JH(2014)undefined Int. J. Mod. Phys. A 29 1450082-undefined
[6]  
Jatkar DP(2018)undefined Int. J. Mod. Phys. A 33 1850091-undefined
[7]  
Jatkar DP(2011)undefined JHEP 1106 031-undefined
[8]  
Oh JH(2011)undefined JHEP 1108 051-undefined
[9]  
Oh JH(2015)undefined JHEP 1505 031-undefined
[10]  
Moon SP(2020)undefined JHEP 11 100-undefined