In earlier work, we derived an expression for a partition function ?(λ), and gave a set of analytic hypotheses under which ?(λ) does not depend on a parameter λ. The proof that ?(λ) is invariant involved entire cyclic cohomology and K-theory. Here we give a direct proof that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}. The considerations apply to non-commutative geometry, to super-symmetric quantum theory, to string theory, and to generalizations of these theories to underlying quantum spaces.