Quantum Invariants

被引:0
作者
Arthur Jaffe
机构
[1] Harvard University,
[2] Cambridge,undefined
[3] MA 02138,undefined
[4] USA,undefined
来源
Communications in Mathematical Physics | 2000年 / 209卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In earlier work, we derived an expression for a partition function ?(λ), and gave a set of analytic hypotheses under which ?(λ) does not depend on a parameter λ. The proof that ?(λ) is invariant involved entire cyclic cohomology and K-theory. Here we give a direct proof that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The considerations apply to non-commutative geometry, to super-symmetric quantum theory, to string theory, and to generalizations of these theories to underlying quantum spaces.
引用
收藏
页码:1 / 12
页数:11
相关论文
empty
未找到相关数据