Discrete Morse Functions and Watersheds

被引:0
作者
Gilles Bertrand
Nicolas Boutry
Laurent Najman
机构
[1] LIGM,Research and Development Laboratory (LRDE)
[2] Univ Gustave Eiffel and CNRS,undefined
[3] EPITA Research Laboratory,undefined
[4] EPITA,undefined
来源
Journal of Mathematical Imaging and Vision | 2023年 / 65卷
关键词
Topological data analysis; Mathematical morphology; Discrete Morse theory; Simplicial stacks; Minimum spanning forest;
D O I
暂无
中图分类号
学科分类号
摘要
Any watershed, when defined on a stack on a normal pseudomanifold of dimension d, is a pure (d-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d-1)$$\end{document}-subcomplex that satisfies a drop-of-water principle. In this paper, we introduce Morse stacks, a class of functions that are equivalent to discrete Morse functions. We show that the watershed of a Morse stack on a normal pseudomanifold is uniquely defined and can be obtained with a linear-time algorithm relying on a sequence of collapses. Last, we prove that such a watershed is the cut of the unique minimum spanning forest, rooted in the minima of the Morse stack, of the facet graph of the pseudomanifold.
引用
收藏
页码:787 / 801
页数:14
相关论文
共 66 条
  • [1] Vincent L(1991)Watersheds in digital spaces: an efficient algorithm based on immersion simulations IEEE Trans. Pattern Anal. Mach. Intell. 13 583-598
  • [2] Soille P(2010)Contour detection and hierarchical image segmentation IEEE Trans. Pattern Anal. Mach. Intell. 33 898-916
  • [3] Arbelaez P(2005)On topological watersheds J. Math. Imaging Vis. 22 217-230
  • [4] Maire M(2009)Watershed cuts: minimum spanning forests and the drop of water principle IEEE Trans. Pattern Anal. Mach. Intell. 31 1362-1374
  • [5] Fowlkes C(2014)Collapses and watersheds in pseudomanifolds of arbitrary dimension J. Math. Imaging Vis. 50 261-285
  • [6] Malik J(2022)Some equivalence relation between persistent homology and morphological dynamics J. Math. Imaging Vis. 64 807-824
  • [7] Bertrand G(2008)Persistent homology—a survey Contemp. Math. 453 257-282
  • [8] Cousty J(2017)A user’s guide to topological data analysis J. Learn. Anal. 4 47-61
  • [9] Bertrand G(1998)Witten–Morse theory for cell complexes Topology 37 945-980
  • [10] Najman L(2014)Skeletonization and partitioning of digital images using Discrete Morse Theory IEEE Trans. Pattern Anal. Mach. Intell. 37 654-666