A projection method for solving nonlinear problems in reflexive Banach spaces

被引:0
作者
Simeon Reich
Shoham Sabach
机构
[1] The Technion - Israel Institute of Technology,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2011年 / 9卷
关键词
47H05; 47H09; 47H10; 47J25; 90C25; Banach space; Bregman distance; Bregman firmly nonexpansive operator; Bregman inverse strongly monotone mapping; Bregman projection; convex feasibility problem; equilibrium problem; fixed point; iterative algorithm; Legendre function; monotone mapping; totally convex function;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convergence of an iterative algorithm for finding common fixed points of finitely many Bregman firmly nonexpansive operators in reflexive Banach spaces. Our algorithm is based on the concept of the so-called shrinking projection method and it takes into account possible computational errors. We establish a strong convergence theorem and then apply it to the solution of convex feasibility and equilibrium problems, and to finding zeroes of two different classes of nonlinear mappings.
引用
收藏
页码:101 / 116
页数:15
相关论文
共 50 条
[31]   An improved subgradient extragradient method with two different parameters for solving variational inequalities in reflexive Banach spaces [J].
Wu, Huanqin ;
Xie, Zhongbing ;
Li, Min .
COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06)
[32]   An improved subgradient extragradient method with two different parameters for solving variational inequalities in reflexive Banach spaces [J].
Huanqin Wu ;
Zhongbing Xie ;
Min Li .
Computational and Applied Mathematics, 2023, 42
[33]   The generalized projection operator on reflexive Banach spaces and its applications [J].
Li, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :55-71
[34]   STRONG CONVERGENCE OF A GENERALIZED-PROJECTION METHOD IN BANACH SPACES [J].
Hao, Yan .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (11) :1847-1857
[35]   Two New Inertial Algorithms for Solving Variational Inequalities in Reflexive Banach Spaces [J].
Reich, Simeon ;
Truong Minh Tuyen ;
Sunthrayuth, Pongsakorn ;
Cholamjiak, Prasit .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 42 (16) :1954-1984
[36]   Modified inertial subgradient extragradient method in reflexive Banach spaces [J].
Bashir Ali ;
G. C. Ugwunnadi ;
M. S. Lawan ;
A. R. Khan .
Boletín de la Sociedad Matemática Mexicana, 2021, 27
[37]   Modified inertial subgradient extragradient method in reflexive Banach spaces [J].
Ali, Bashir ;
Ugwunnadi, G. C. ;
Lawan, M. S. ;
Khan, A. R. .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (01)
[38]   ON FIXED POINT PROBLEMS OF COUNTABLE BREGMAN QUASI-NONEXPANSIVE MAPPINGS IN REFLEXIVE BANACH SPACES [J].
Liu, Liya ;
Qin, Xiaolong ;
Wang, Lin .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (07) :1399-1415
[39]   A Tseng extragradient method for solving variational inequality problems in Banach spaces [J].
O. K. Oyewole ;
H. A. Abass ;
A. A. Mebawondu ;
K. O. Aremu .
Numerical Algorithms, 2022, 89 :769-789
[40]   A Tseng extragradient method for solving variational inequality problems in Banach spaces [J].
Oyewole, O. K. ;
Abass, H. A. ;
Mebawondu, A. A. ;
Aremu, K. O. .
NUMERICAL ALGORITHMS, 2022, 89 (02) :769-789