A projection method for solving nonlinear problems in reflexive Banach spaces

被引:0
作者
Simeon Reich
Shoham Sabach
机构
[1] The Technion - Israel Institute of Technology,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2011年 / 9卷
关键词
47H05; 47H09; 47H10; 47J25; 90C25; Banach space; Bregman distance; Bregman firmly nonexpansive operator; Bregman inverse strongly monotone mapping; Bregman projection; convex feasibility problem; equilibrium problem; fixed point; iterative algorithm; Legendre function; monotone mapping; totally convex function;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convergence of an iterative algorithm for finding common fixed points of finitely many Bregman firmly nonexpansive operators in reflexive Banach spaces. Our algorithm is based on the concept of the so-called shrinking projection method and it takes into account possible computational errors. We establish a strong convergence theorem and then apply it to the solution of convex feasibility and equilibrium problems, and to finding zeroes of two different classes of nonlinear mappings.
引用
收藏
页码:101 / 116
页数:15
相关论文
共 50 条
[21]   A New Halpern-Type Bregman Projection Method for Solving Variational Inequality Problems in Reflexive Banach Space [J].
Yan Tang ;
Yeyu Zhang .
Results in Mathematics, 2023, 78
[22]   Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces [J].
Oyewole, Olawale Kazeem ;
Jolaoso, Lateef Olakunle ;
Aremu, Kazeem Olalekan .
KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01) :69-94
[23]   On the generalized Bregman projection operator in reflexive Banach spaces [J].
G. Zamani Eskandani ;
S. Azarmi ;
M. Raeisi .
Journal of Fixed Point Theory and Applications, 2020, 22
[24]   On the generalized Bregman projection operator in reflexive Banach spaces [J].
Eskandani, G. Zamani ;
Azarmi, S. ;
Raeisi, M. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (01)
[25]   AN ACCELERATED SHRINKING PROJECTION ALGORITHM FOR SOLVING THE SPLIT VARIATIONAL INCLUSION PROBLEM IN REFLEXIVE BANACH SPACES [J].
Liu, Xindong ;
Liu, Min .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (04) :889-903
[26]   On a generalized proximal point method for solving equilibrium problems in Banach spaces [J].
Burachik, Regina ;
Kassay, Gabor .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) :6456-6464
[27]   Bregman strongly nonexpansive operators in reflexive Banach spaces [J].
Martin-Marquez, Victoria ;
Reich, Simeon ;
Sabach, Shoham .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) :597-614
[28]   Convergence Analysis of a New Bregman Extragradient Method for Solving Fixed Point Problems and Variational Inequality Problems in Reflexive Banach Spaces [J].
Shaotao Hu ;
Yuanheng Wang ;
Qiao-Li Dong .
Journal of Scientific Computing, 2023, 96
[29]   Convergence Analysis of a New Bregman Extragradient Method for Solving Fixed Point Problems and Variational Inequality Problems in Reflexive Banach Spaces [J].
Hu, Shaotao ;
Wang, Yuanheng ;
Dong, Qiao-Li .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (01)
[30]   A Monotone Bregan Projection Algorithm for Fixed Point and Equilibrium Problems in a Reflexive Banach Space [J].
Cho, Sun Young .
FILOMAT, 2020, 34 (05) :1487-1497