On the stock estimation for some fishery systems

被引:0
作者
A. Guiro
A. Iggidr
D. Ngom
H. Touré
机构
[1] Université de Ouagadougou,Laboratoire d’Analyse Mathématique des Equations (LAME), Faculté des Sciences et Techniques
[2] INRIA Nancy – Grand Est and University Paul Verlaine-Metz,Laboratoire d’Analyse Numérique et d’Informatique (LANI), UFR de Sciences Appliquées et de Technologie
[3] Université Gaston Berger,undefined
来源
Reviews in Fish Biology and Fisheries | 2009年 / 19卷
关键词
Fishery models; Stage-structured population models; Estimation; Harvested fish population; Observers;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we address the stock estimation problem for two fishery models. We show that a tool from nonlinear control theory called “observer” can be helpful to deal with the resource stock estimation in the field of renewable resource management. It is often difficult or expensive to measure all the state variables characterising the evolution of a given population system, therefore the question arises whether from the observation of certain indicators of the considered system, the whole state of the population system can be recovered or at least estimated. The goal of this paper is to show how some techniques of control theory can be applied for the approximate estimation of the unmeasurable state variables using only the observed data together with the dynamical model describing the evolution of the system. More precisely we shall consider two fishery models and we shall show how to built for each model an auxiliary dynamical system (the observer) that uses the available data (the total of caught fish) and which produces a dynamical estimation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat x(t)$$\end{document} of the unmeasurable stock state x(t). Moreover the convergence speed of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat x(t)$$\end{document} towards x(t) can be chosen.
引用
收藏
页码:313 / 327
页数:14
相关论文
共 76 条
[1]  
Alamir M(2002)Further results on nonlinear receding-horizon observers IEEE Trans Autom Control 47 1184-1188
[2]  
Calvillo-Corona L(2005)A tunable multivariable nonlinear robust observer for biological systems Comptes Rendus Biol 328 317-325
[3]  
Alcaraz-Gonzalez V(1998)Optimal harvesting for a nonlinear age-dependent population dynamics J Math Anal Appl 226 6-22
[4]  
Salazar-Pena R(2000)Separation results for the stabilization of nonlinear systems using different high-gain observer designs Syst Control Lett 39 183-191
[5]  
Gonzalez-Alvarez V(1998)Nonlinear observers for a class of biological systems: application to validation of a phytoplanktonic growth model IEEE Trans Autom Control 43 1056-1065
[6]  
Gouze J-L(1983)Canonical form observer design for non-linear time-variable systems Int J Control 38 419-431
[7]  
Steyer J-P(2003)A model for fishery resource with reserve area Nonlinear Anal Real World Appl 4 625-637
[8]  
Aniţa S(1998)Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors Automatica 34 301-318
[9]  
Atassi A(2005)Optimal pulse fishing policy in stage-structured models with birth pulses Chaos, Solitons & Fractals 25 1209-1219
[10]  
Khalil H(1994)Observability and observers for nonlinear systems SIAM J Control Optim 32 975-994