Six cultivars of basil, ‘Genovese’, ‘Purpurascens’, ‘Cinnamon’, ‘Crispum’, ‘Citriodora’, and ‘Siam Queen’, at the age of 8 weeks, were subjected to low temperature (6 °C for 8 days) or 18 °C (control). Content of hydrogen peroxide (H2O2), malondialdehyde (MDA), total phenolics, and l-ascorbic acid were assessed in basil leaves after low temperature exposure. Activity of peroxidase (POD), and catalase (CAT) enzymes and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity were also determined. The greatest increase in H2O2 was observed for lettuce leaf basil, by 104 % in comparison to the control, while most noticeable increase in the content of MDA was noted for lemon basil (by 77 %). Chilling treatment resulted in higher POD activity in two cultivars: Thai and green basil, changes in CAT activity was negligible for almost all tested genotypes, with an exception of Thai basil, for which activity of this enzyme dropped. Chilling induced the increase of l-ascorbic acid in most tested basil cultivars, but total phenolic content increased significantly only in lettuce leaf basil. Higher ability in scavenging free radicals was shown in basil treated with 6 °C, especially the red basil cultivar. For this genotype, DPPH· radical scavenging activity was the highest among tested cultivars and was parallel to the highest content of phenolics. The results indicated overproduction of H2O2, deterioration of membrane integrity, and activation of enzymatic and/or non-enzymatic defence mechanisms in basil with an evidence of genotypic variation as the response to low temperature.