Sums of two polynomials with each having real zeros symmetric with the other

被引:0
作者
Seon-Hong Kim
机构
[1] Seoul National University,School of Mathematical Sciences
来源
Proceedings of the Indian Academy of Sciences - Mathematical Sciences | 2002年 / 112卷
关键词
Polynomial; zero; geometric progression;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the polynomial equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\prod\limits_{i = 1}^n {(x - r_i )} + \prod\limits_{i = 1}^n {(x + r_i )} = 0,$$ \end{document} where 0 <r1 ⪯ {irt}2⪯... ⪯rn All zeros of this equation lie on the imaginary axis. In this paper, we show that no two of the zeros can be equal and the gaps between the zeros in the upper half-plane strictly increase as one proceeds upward. Also we give some examples of geometric progressions of the zeros in the upper half-plane in casesn = 6, 8, 10.
引用
收藏
页码:283 / 288
页数:5
相关论文
共 1 条
  • [1] Fell H J(1980)On the zeros of convex combinations of polynomials Pacific J. Math. 89 43-50