Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators

被引:0
作者
Jun Cao
Dachun Yang
Sibei Yang
机构
[1] Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences, Beijing Normal University
[2] Ministry of Education,undefined
来源
Revista Matemática Complutense | 2013年 / 26卷
关键词
Riesz transform; Davies-Gaffney estimate; Schrödinger operator; Second order elliptic operator; Hardy space; Weak Hardy space; 47B06; 42B20; 42B25; 42B30; 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
Let L1 be a nonnegative self-adjoint operator in L2(ℝn) satisfying the Davies-Gaffney estimates and L2 a second order divergence form elliptic operator with complex bounded measurable coefficients. A typical example of L1 is the Schrödinger operator −Δ+V, where Δ is the Laplace operator on ℝn and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le V\in L^{1}_{\mathop{\mathrm{loc}}} ({\mathbb{R}}^{n})$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} be the Hardy space associated to Li for i∈{1, 2}. In this paper, the authors prove that the Riesz transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D (L_{i}^{-1/2})$\end{document} is bounded from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} to the classical weak Hardy space WHp(ℝn) in the critical case that p=n/(n+1). Recall that it is known that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(L_{i}^{-1/2})$\end{document} is bounded from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} to the classical Hardy space Hp(ℝn) when p∈(n/(n+1), 1].
引用
收藏
页码:99 / 114
页数:15
相关论文
共 59 条
[11]  
Coifman R.R.(1972)Old and new Morrey spaces with heat kernel bounds Acta Math. 129 137-193
[12]  
Weiss G.(2003)Hardy space Publ. Mat. 47 497-515
[13]  
Duong X.T.(2009) associated to Schrödinger operator with potential satisfying reverse Hölder inequality Math. Ann. 344 37-116
[14]  
Yan L.(2011)The space weak Mem. Am. Math. Soc. 214 vi+78-800
[15]  
Duong X.T.(2011) spaces of several variables Ann. Sci. École Norm. Sup. (4) 44 723-1224
[16]  
Yan L.(2010) bounds for Riesz transforms and square roots associated to second order elliptic operators J. Funct. Anal. 258 1167-149
[17]  
Duong X.T.(2010)Hardy and BMO spaces associated to divergence form elliptic operators Integral Equ. Oper. Theory 67 123-373
[18]  
Xiao J.(2011)Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates Commun. Contemp. Math. 13 331-35
[19]  
Yan L.(2011)Second order elliptic operators with complex bounded measurable coefficients in J. Fourier Anal. Appl. 17 1-1080
[20]  
Dziubański J.(2009), Sobolev and Hardy spaces Sci. China Ser. A 52 1042-160