Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators

被引:0
作者
Jun Cao
Dachun Yang
Sibei Yang
机构
[1] Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences, Beijing Normal University
[2] Ministry of Education,undefined
来源
Revista Matemática Complutense | 2013年 / 26卷
关键词
Riesz transform; Davies-Gaffney estimate; Schrödinger operator; Second order elliptic operator; Hardy space; Weak Hardy space; 47B06; 42B20; 42B25; 42B30; 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
Let L1 be a nonnegative self-adjoint operator in L2(ℝn) satisfying the Davies-Gaffney estimates and L2 a second order divergence form elliptic operator with complex bounded measurable coefficients. A typical example of L1 is the Schrödinger operator −Δ+V, where Δ is the Laplace operator on ℝn and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le V\in L^{1}_{\mathop{\mathrm{loc}}} ({\mathbb{R}}^{n})$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} be the Hardy space associated to Li for i∈{1, 2}. In this paper, the authors prove that the Riesz transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D (L_{i}^{-1/2})$\end{document} is bounded from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} to the classical weak Hardy space WHp(ℝn) in the critical case that p=n/(n+1). Recall that it is known that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(L_{i}^{-1/2})$\end{document} is bounded from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{p}_{L_{i}}(\mathbb{R}^{n})$\end{document} to the classical Hardy space Hp(ℝn) when p∈(n/(n+1), 1].
引用
收藏
页码:99 / 114
页数:15
相关论文
共 59 条
  • [1] Ahn B.(2011)Orlicz-Hardy spaces associated to operators satisfying bounded J. Math. Anal. Appl. 373 485-501
  • [2] Li J.(2003) functional calculus and Davies-Gaffney estimates J. Funct. Anal. 201 148-184
  • [3] Auscher P.(2008)Hardy spaces and divergence operators on strongly Lipschitz domains of ℝ J. Geom. Anal. 18 192-248
  • [4] Russ E.(2010)Hardy spaces of differential forms on Riemannian manifolds Houst. J. Math. 36 1067-1095
  • [5] Auscher P.(1977)Hardy spaces Bull. Am. Math. Soc. 83 569-645
  • [6] McIntosh A.(2005) associated to Schrödinger type operators (−Δ) Commun. Pure Appl. Math. 58 1375-1420
  • [7] Russ E.(2005)+ J. Am. Math. Soc. 18 943-973
  • [8] Cao J.(2007)Extensions of Hardy spaces and their use in analysis J. Fourier Anal. Appl. 13 87-111
  • [9] Liu L.(1999)New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications Rev. Mat. Iberoam. 15 279-296
  • [10] Yang D.(1986)Duality of Hardy and BMO spaces associated with operators with heat kernel bounds Studia Math. 85 1-16