Constructing maximum likelihood estimates for statistically uncertain linear systems

被引:0
作者
G. A. Timofeeva
N. V. Medvedeva
机构
[1] Ural State Academy of Railway Transport,
来源
Automation and Remote Control | 2011年 / 72卷
关键词
Remote Control; Maximum Likelihood Estimate; Deterministic Model; Random Perturbation; Uncertain System;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the parameters estimation problem for a statistically uncertain linear model, i.e., a model whose observations contain both random perturbations with known distributions and uncertain perturbations for which we only know the domain of their possible values. To solve this problem, we use an approach related to the maximum likelihood method for statistically uncertain systems. We show that as the variances of random perturbations tend to zero, maximum likelihood estimates converge to the information set of the system without random perturbations.
引用
收藏
页码:1887 / 1897
页数:10
相关论文
共 7 条
[1]  
Kats I.Ya.(1975)Minimax Estimation in Multistage Systems Dokl. Akad. Nauk SSSR 221 535-538
[2]  
Kurzhanski A.B.(1998)Minimax Identification of an Generalized Uncertain-Stochastic Linear Model Autom. Remote Control 59 1632-1643
[3]  
Pankov A.R.(2003)Nonlinear Confidence Estimates for Statistically Uncertain Systems Autom. Remote Control 64 1724-1733
[4]  
Semenikhin K.V.(2007)Comparison of Linear and Nonlinear Methods of Confidence Estimation for Statistically Uncertain Systems Autom. Remote Control 68 619-627
[5]  
Timofeeva G.A.(undefined)undefined undefined undefined undefined-undefined
[6]  
Medvedeva N.V.(undefined)undefined undefined undefined undefined-undefined
[7]  
Timofeeva G.A.(undefined)undefined undefined undefined undefined-undefined