Regularity of a class of non-uniformly nonlinear elliptic equations

被引:0
作者
Lihe Wang
Fengping Yao
机构
[1] Shanghai Jiaotong University,Department of Mathematic
[2] University of Iowa,Department of Mathematics
[3] Shanghai University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2016年 / 55卷
关键词
35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain the interior C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document} regularity of weak solutions for a class of non-uniformly nonlinear elliptic equations diva1∇u∇u+a2∇u∇u=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {div} ~\! \left( a_1\left( \left| \nabla u \right| \right) \nabla u + a_2\left( \left| \nabla u \right| \right) \nabla u \right) =0, \end{aligned}$$\end{document}including the following special model div∇up-2∇u+∇uq-2∇u=0foranyp,q>1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {div} ~\! \left( \left| \nabla u \right| ^{p-2} \nabla u + \left| \nabla u \right| ^{q-2} \nabla u \right) =0\quad \ \text{ for } \text{ any } \ p, q>1. \end{aligned}$$\end{document}These equations come from variational problems whose model energy functional is given by P(u,Ω)=:∫ΩB1∇u+B2∇udx,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {P}(u, \Omega )=: \int _{\Omega } B^1\left( \left| \nabla u \right| \right) + B^{2}\left( \left| \nabla u \right| \right) dx, \end{aligned}$$\end{document}where Bk(t)=∫0tτak(τ)dτfort≥0andk=1,2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B^k(t)=\int _0^t \tau a_k(\tau )~d\tau \quad \text{ for } \quad t\ge 0 \quad \text{ and }\quad k=1,2. \end{aligned}$$\end{document}We remark that Bk(t)=|t|αklog(1+|t|)forαk>1andk=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B^k(t)= |t|^{\alpha _k} \log \big ( 1+|t|\big ) \quad \text{ for } ~~ ~~\alpha _k>1~~~ \text{ and }~~k=1,2 \end{aligned}$$\end{document}satisfy the given conditions in this work.
引用
收藏
相关论文
共 28 条
  • [1] Byun S(2008)Gradient Estimates in Orlicz space for nonlinear elliptic Equations J. Funct. Anal. 255 1851-1873
  • [2] Yao F(1989)Interior a priori estimates for solutions of fully nonlinear equations Ann. Math. 130 189-213
  • [3] Zhou S(2011)Global Lipschitz regularity for a class of quasilinear elliptic equations Commun. Partial Differ. Equ. 36 100-133
  • [4] Caffarelli LA(2014)Global boundedness of the gradient for a class of nonlinear elliptic systems Arch. Ration. Mech. Anal. 212 129-177
  • [5] Cianchi A(2014)Gradient regularity via rearrangements for J. Eur. Math. Soc. 16 571-595
  • [6] Maz’ya V(2015)-Laplacian type elliptic boundary value problems Arch. Ration. Mech. Anal. 218 219-273
  • [7] Cianchi A(2015)Bounded minimisers of double phase variational integrals Arch. Ration. Mech. Anal. 215 443-496
  • [8] Maz’ya V(1983)Regularity for double phase variational problems Nonlinear Anal. 7 827-850
  • [9] Cianchi A(2010) local regularity of weak solutions of degenerate elliptic equations Ann. Inst. H. Poincareé 27 1361-1396
  • [10] Maz’ya V(1982)Local Lipschitz regularity for degenerate elliptic systems J. Differ. Equ. 45 356-373